Menu Close

Find-the-slope-of-the-line-tangent-to-the-graph-r-3cos-2-2-at-pi-6-




Question Number 120463 by bramlexs22 last updated on 31/Oct/20
Find the slope of the line tangent  to the graph r=3cos^2 (2θ) at  θ=(π/6).
Findtheslopeofthelinetangenttothegraphr=3cos2(2θ)atθ=π6.
Answered by mr W last updated on 31/Oct/20
(dr/dθ)=−12 cos (2θ) sin (2θ)=−6 sin (4θ)  x=r cos θ  (dx/dθ)=−r sin θ+(dr/dθ) cos θ  =−3 cos^2  (2θ) sin θ−6 sin (4θ) cos θ  y=r sin θ  (dy/dθ)=r cos θ+(dr/dθ) sin θ  =3 cos^2  (2θ) cos θ−6 sin (4θ) sin θ  (dy/dx)=((dy/dθ)/(dx/dθ))=((3 cos^2  (2θ) cos θ−6 sin (4θ) sin θ)/(−3 cos^2  (2θ) sin θ−6 sin (4θ) cos θ))  =((cos^2  (2θ) cos θ−2 sin (4θ) sin θ)/(−cos^2  (2θ) sin θ−2 sin (4θ) cos θ))  =−((cos^2  (2θ)−2 sin (4θ) tan θ)/(cos^2  (2θ) tan θ+2 sin (4θ)))  =−((cos^2  ((π/3))−2 sin (((2π)/3)) tan (π/6))/(cos^2  ((π/3)) tan (π/6)+2 sin (((2π)/3))))  =−(((1/4)−2×((√3)/2)×(1/( (√3))))/((1/(4(√3)))+2×((√3)/2)))  =((3(√3))/(13))
drdθ=12cos(2θ)sin(2θ)=6sin(4θ)x=rcosθdxdθ=rsinθ+drdθcosθ=3cos2(2θ)sinθ6sin(4θ)cosθy=rsinθdydθ=rcosθ+drdθsinθ=3cos2(2θ)cosθ6sin(4θ)sinθdydx=dydθdxdθ=3cos2(2θ)cosθ6sin(4θ)sinθ3cos2(2θ)sinθ6sin(4θ)cosθ=cos2(2θ)cosθ2sin(4θ)sinθcos2(2θ)sinθ2sin(4θ)cosθ=cos2(2θ)2sin(4θ)tanθcos2(2θ)tanθ+2sin(4θ)=cos2(π3)2sin(2π3)tanπ6cos2(π3)tanπ6+2sin(2π3)=142×32×13143+2×32=3313
Commented by mr W last updated on 31/Oct/20
Answered by john santu last updated on 01/Nov/20
The slope of the tangent to the graph  of r = f(θ) at (r,θ) given by   m = (dy/dx)= ((tan θ.(dr/dθ) +r)/((dr/dθ)−r tan θ)).  Here f(θ)=3cos^2 θ →f ′(θ)=−6sin 4θ.  now f(π/6)=3cos^2 (π/6)=(3/4) and   f ′(π/6)=−3(√3). Thus the formula  gives m = (dy/dx) = ((−3(√3) tan (π/6)+(3/4))/(−3(√3)−((3/4))tan (π/6)))   = ((3(√3))/(13))
Theslopeofthetangenttothegraphofr=f(θ)at(r,θ)givenbym=dydx=tanθ.drdθ+rdrdθrtanθ.Heref(θ)=3cos2θf(θ)=6sin4θ.nowf(π/6)=3cos2(π/6)=34andf(π/6)=33.Thustheformulagivesm=dydx=33tan(π/6)+3433(34)tan(π/6)=3313

Leave a Reply

Your email address will not be published. Required fields are marked *