Find-the-slope-of-the-line-tangent-to-the-graph-r-3cos-2-2-at-pi-6- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 120463 by bramlexs22 last updated on 31/Oct/20 Findtheslopeofthelinetangenttothegraphr=3cos2(2θ)atθ=π6. Answered by mr W last updated on 31/Oct/20 drdθ=−12cos(2θ)sin(2θ)=−6sin(4θ)x=rcosθdxdθ=−rsinθ+drdθcosθ=−3cos2(2θ)sinθ−6sin(4θ)cosθy=rsinθdydθ=rcosθ+drdθsinθ=3cos2(2θ)cosθ−6sin(4θ)sinθdydx=dydθdxdθ=3cos2(2θ)cosθ−6sin(4θ)sinθ−3cos2(2θ)sinθ−6sin(4θ)cosθ=cos2(2θ)cosθ−2sin(4θ)sinθ−cos2(2θ)sinθ−2sin(4θ)cosθ=−cos2(2θ)−2sin(4θ)tanθcos2(2θ)tanθ+2sin(4θ)=−cos2(π3)−2sin(2π3)tanπ6cos2(π3)tanπ6+2sin(2π3)=−14−2×32×13143+2×32=3313 Commented by mr W last updated on 31/Oct/20 Answered by john santu last updated on 01/Nov/20 Theslopeofthetangenttothegraphofr=f(θ)at(r,θ)givenbym=dydx=tanθ.drdθ+rdrdθ−rtanθ.Heref(θ)=3cos2θ→f′(θ)=−6sin4θ.nowf(π/6)=3cos2(π/6)=34andf′(π/6)=−33.Thustheformulagivesm=dydx=−33tan(π/6)+34−33−(34)tan(π/6)=3313 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-185993Next Next post: Question-185996 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.