Menu Close

Find-the-slope-of-the-tangent-line-to-the-graph-of-y-4-3y-4x-3-5x-1-at-the-point-P-1-2-




Question Number 91476 by Zainal Arifin last updated on 01/May/20
Find the slope of the tangent   line to the graph of:  y^4 +3y−4x^3 =5x+1  at the point  P (1, −2)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{line}\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}: \\ $$$$\mathrm{y}^{\mathrm{4}} +\mathrm{3y}−\mathrm{4x}^{\mathrm{3}} =\mathrm{5x}+\mathrm{1}\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{P}\:\left(\mathrm{1},\:−\mathrm{2}\right) \\ $$
Commented by john santu last updated on 01/May/20
(4y^3 +3)y′ = 12x^2 +5  y′ = ((12x^2 +5)/(4y^3 +3)) ⇒slope = −((17)/(29))
$$\left(\mathrm{4}{y}^{\mathrm{3}} +\mathrm{3}\right){y}'\:=\:\mathrm{12}{x}^{\mathrm{2}} +\mathrm{5} \\ $$$${y}'\:=\:\frac{\mathrm{12}{x}^{\mathrm{2}} +\mathrm{5}}{\mathrm{4}{y}^{\mathrm{3}} +\mathrm{3}}\:\Rightarrow{slope}\:=\:−\frac{\mathrm{17}}{\mathrm{29}} \\ $$
Commented by Zainal Arifin last updated on 01/May/20
thank you sir , you are right.
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:,\:\mathrm{you}\:\mathrm{are}\:\mathrm{right}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *