Menu Close

Find-the-smallest-value-of-a-given-expression-x-2-6x-8-2-5-




Question Number 150119 by mathdanisur last updated on 09/Aug/21
Find the smallest value of a given  expression:  (x^2  + 6x + 8)^2  + 5
Findthesmallestvalueofagivenexpression:(x2+6x+8)2+5
Answered by Ar Brandon last updated on 09/Aug/21
f(x)=(x^2 +6x+8)^2 +5  f ′(x)=2(2x+6)(x^2 +6x+8)=0  ⇒x=−3, x=−2, x=−4  f ′′(x)=2(2x+6)(2x+6)+4(4x^2 +6x+8)  f ′′(−4)>0 ⇒f(−4) is minimum value  f(−4)=(16−24+8)^2 +5=5
f(x)=(x2+6x+8)2+5f(x)=2(2x+6)(x2+6x+8)=0x=3,x=2,x=4f(x)=2(2x+6)(2x+6)+4(4x2+6x+8)f(4)>0f(4)isminimumvaluef(4)=(1624+8)2+5=5
Commented by mathdanisur last updated on 09/Aug/21
Thank You Ser
ThankYouSer
Answered by ajfour last updated on 09/Aug/21
y={(x+3)^2 −1}^2 +5    y_(min) =5  when  x=−3±1 =−2, −4
y={(x+3)21}2+5ymin=5whenx=3±1=2,4
Commented by mathdanisur last updated on 09/Aug/21
Thankyou Ser
ThankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *