Menu Close

find-the-solution-4x-2-1-2x-1-2-lt-2x-9-




Question Number 83512 by jagoll last updated on 03/Mar/20
find the solution   ((4x^2 )/((1−(√(2x+1)))^2 )) < 2x+9
$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\frac{\mathrm{4x}^{\mathrm{2}} }{\left(\mathrm{1}−\sqrt{\mathrm{2x}+\mathrm{1}}\right)^{\mathrm{2}} }\:<\:\mathrm{2x}+\mathrm{9} \\ $$
Answered by john santu last updated on 03/Mar/20
(1) 2x +9 > 0 ⇒ x > −(9/2)  (2) x ≥ −(1/2)  (3) 4x^2  < (2x+9)(1−(√(2x+1)))^2   let (√(2x+1)) = t ⇒x = ((t^2 −1)/2)  (t^2 −1)^2 < (t−1)^2 (t^2 +8)  (t−1)^2  { (t+1)^2  −(t^2 +8) } <0  (t−1)^2  (2t−7) <0  ⇒ t < 1 ∪ 1 < t < (7/2)  ⇒ (√(2x+1)) < 1 ∪ 1 < (√(2x+1)) < (7/2)  ⇒ x < 0 ∪ 0 < x < ((45)/8)  the solution is (1)∧(2)∧(3)  −(1/2)≤x<0 ∪ 0 < x < ((45)/8)
$$\left(\mathrm{1}\right)\:\mathrm{2x}\:+\mathrm{9}\:>\:\mathrm{0}\:\Rightarrow\:\mathrm{x}\:>\:−\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{x}\:\geqslant\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{4x}^{\mathrm{2}} \:<\:\left(\mathrm{2x}+\mathrm{9}\right)\left(\mathrm{1}−\sqrt{\mathrm{2x}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{let}\:\sqrt{\mathrm{2x}+\mathrm{1}}\:=\:\mathrm{t}\:\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} <\:\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{t}^{\mathrm{2}} +\mathrm{8}\right) \\ $$$$\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \:\left\{\:\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} \:−\left(\mathrm{t}^{\mathrm{2}} +\mathrm{8}\right)\:\right\}\:<\mathrm{0} \\ $$$$\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \:\left(\mathrm{2t}−\mathrm{7}\right)\:<\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{t}\:<\:\mathrm{1}\:\cup\:\mathrm{1}\:<\:\mathrm{t}\:<\:\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\:\sqrt{\mathrm{2x}+\mathrm{1}}\:<\:\mathrm{1}\:\cup\:\mathrm{1}\:<\:\sqrt{\mathrm{2x}+\mathrm{1}}\:<\:\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{x}\:<\:\mathrm{0}\:\cup\:\mathrm{0}\:<\:\mathrm{x}\:<\:\frac{\mathrm{45}}{\mathrm{8}} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{1}\right)\wedge\left(\mathrm{2}\right)\wedge\left(\mathrm{3}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\leqslant\mathrm{x}<\mathrm{0}\:\cup\:\mathrm{0}\:<\:\mathrm{x}\:<\:\frac{\mathrm{45}}{\mathrm{8}} \\ $$
Commented by jagoll last updated on 03/Mar/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *