Menu Close

find-the-solution-4x-2-1-2x-1-2-lt-2x-9-




Question Number 83512 by jagoll last updated on 03/Mar/20
find the solution   ((4x^2 )/((1−(√(2x+1)))^2 )) < 2x+9
findthesolution4x2(12x+1)2<2x+9
Answered by john santu last updated on 03/Mar/20
(1) 2x +9 > 0 ⇒ x > −(9/2)  (2) x ≥ −(1/2)  (3) 4x^2  < (2x+9)(1−(√(2x+1)))^2   let (√(2x+1)) = t ⇒x = ((t^2 −1)/2)  (t^2 −1)^2 < (t−1)^2 (t^2 +8)  (t−1)^2  { (t+1)^2  −(t^2 +8) } <0  (t−1)^2  (2t−7) <0  ⇒ t < 1 ∪ 1 < t < (7/2)  ⇒ (√(2x+1)) < 1 ∪ 1 < (√(2x+1)) < (7/2)  ⇒ x < 0 ∪ 0 < x < ((45)/8)  the solution is (1)∧(2)∧(3)  −(1/2)≤x<0 ∪ 0 < x < ((45)/8)
(1)2x+9>0x>92(2)x12(3)4x2<(2x+9)(12x+1)2let2x+1=tx=t212(t21)2<(t1)2(t2+8)(t1)2{(t+1)2(t2+8)}<0(t1)2(2t7)<0t<11<t<722x+1<11<2x+1<72x<00<x<458thesolutionis(1)(2)(3)12x<00<x<458
Commented by jagoll last updated on 03/Mar/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *