Menu Close

find-the-solution-6-x-gt-x-4-




Question Number 117641 by bemath last updated on 13/Oct/20
find the solution (√(6−x)) > x−4
findthesolution6x>x4
Answered by Don08q last updated on 13/Oct/20
(6−x) > (x−4)^2  or (6−x) < (x−4)^2         when  6 − x > x^2 −8x+16                   x^2  −7x + 10 < 0              (x − 5)(x − 2) < 0                    2  < x <  5          when  6 − x < x^2 −8x+16                   x^2  −7x + 10 > 0              (x − 5)(x − 2) > 0                   x < 2  ∪  x > 5   Hence, {2 < x < 5  or  x < 2 ∪  x > 5}
(6x)>(x4)2or(6x)<(x4)2when6x>x28x+16x27x+10<0(x5)(x2)<02<x<5when6x<x28x+16x27x+10>0(x5)(x2)>0x<2x>5Hence,{2<x<5orx<2x>5}
Commented by bemath last updated on 13/Oct/20
your solution 2<x<5 ?   i think it wrong. let substitute  x=−3 ⇒ (√(6−(−3))) > −3−4  ⇒ 3 > −7 it true
yoursolution2<x<5?ithinkitwrong.letsubstitutex=36(3)>343>7ittrue
Answered by floor(10²Eta[1]) last updated on 13/Oct/20
x<5
x<5
Answered by 1549442205PVT last updated on 13/Oct/20
 (√(6−x)) > x−4(1)  We need the condition x≤6 for the  root is defined.Then   i)For x<4 then (1) is true  ii)For 4≤x≤6 (2) then  (1)⇔(6−x)>(x−4)^2 =x^2 −8x+16  ⇔x^2 −7x+10<0⇔(x−2)(x−5)<0  ⇔2<x<5(3)  Combining (2)(3)we get 4≤x<5  .Combining i)and ii) we get solutions  of given inequality are x∈(−∞,5)
6x>x4(1)Weneedtheconditionx6fortherootisdefined.Theni)Forx<4then(1)istrueii)For4x6(2)then(1)(6x)>(x4)2=x28x+16x27x+10<0(x2)(x5)<02<x<5(3)Combining(2)(3)weget4x<5.Combiningi)andii)wegetsolutionsofgiveninequalityarex(,5)

Leave a Reply

Your email address will not be published. Required fields are marked *