Menu Close

find-the-solution-of-equation-cos-2x-sin-3-x-3-sin-x-




Question Number 112173 by bobhans last updated on 06/Sep/20
 find the solution of equation   (√(cos 2x−sin^3 x+3)) = sin x
$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\sqrt{\mathrm{cos}\:\mathrm{2x}−\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{3}}\:=\:\mathrm{sin}\:\mathrm{x}\: \\ $$
Answered by john santu last updated on 06/Sep/20
since sin x ≥ 0 , then   cos 2x−sin^3 x+3 = sin^2 x  1−2sin^2 x−sin^3 x+3 = sin^2 x  sin^3 x+3sin^2 x−4 =0  (sin x−1)(sin^2 +4sin x+4)=0  (sin x−1)(sin x+2)^2  = 0  sin x = 1 →x = (π/2) + k.2π ; k∈Z
$${since}\:\mathrm{sin}\:{x}\:\geqslant\:\mathrm{0}\:,\:{then}\: \\ $$$$\mathrm{cos}\:\mathrm{2}{x}−\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{3}\:=\:\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{3}\:=\:\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{3sin}\:^{\mathrm{2}} {x}−\mathrm{4}\:=\mathrm{0} \\ $$$$\left(\mathrm{sin}\:{x}−\mathrm{1}\right)\left(\mathrm{sin}\:^{\mathrm{2}} +\mathrm{4sin}\:{x}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\left(\mathrm{sin}\:{x}−\mathrm{1}\right)\left(\mathrm{sin}\:{x}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\mathrm{sin}\:{x}\:=\:\mathrm{1}\:\rightarrow{x}\:=\:\frac{\pi}{\mathrm{2}}\:+\:{k}.\mathrm{2}\pi\:;\:{k}\in\mathbb{Z} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *