Menu Close

Find-the-solution-of-inequality-x-2-x-gt-6-




Question Number 63481 by naka3546 last updated on 04/Jul/19
Find  the  solution  of  inequality  :         x^2  + ∣x∣ > 6
Findthesolutionofinequality:x2+x>6
Commented by mathmax by abdo last updated on 04/Jul/19
(ine) ⇒∣x∣^2 +∣x∣−6>0 ⇒t^2 +t−6>0  Δ=1−4(−6)=25 ⇒ t_1 =((−1+5)/2) =2  and t_2 =((−1−5)/2) =−3 ⇒  ∣x∣^2 +∣x∣−6 =(∣x∣−2)(∣x∣+3)   so  (ine) ⇒{∣x∣−2}{∣x∣+3}>0 ⇒  ∣x∣−2 >0   (because ∣x∣ +3>0 ⇒ x>2 or x<−2 ⇒  x ∈]−∞,−2[∪]2,+∞[
(ine)⇒∣x2+x6>0t2+t6>0Δ=14(6)=25t1=1+52=2andt2=152=3x2+x6=(x2)(x+3)so(ine){x2}{x+3}>0x2>0(becausex+3>0x>2orx<2x],2[]2,+[
Answered by MJS last updated on 04/Jul/19
x>0  x^2 +x>6  x^2 +x−6=0 ⇒ x=−3∨x=2  ⇒ x<−3∨x>2 but x>0  ⇒ x>2    x<0  x^2 −x>6  x^2 −x−6=0 ⇒ x=−2∨x=3  ⇒ x<−2∨x>3 but x<0  ⇒ x<−2    x^2 +∣x∣>6 ⇒ x<−2∨2<x ⇔ x∈]−∞; −2[∪]2; +∞[
x>0x2+x>6x2+x6=0x=3x=2x<3x>2butx>0x>2x<0x2x>6x2x6=0x=2x=3x<2x>3butx<0x<2x2+x∣>6x<22<xx];2[]2;+[

Leave a Reply

Your email address will not be published. Required fields are marked *