Menu Close

find-the-solution-of-log-2-x-2-x-3-lt-2-




Question Number 87194 by john santu last updated on 03/Apr/20
find the solution of   ((∣ log_2 (x)+2∣)/(x−3)) < 2
findthesolutionoflog2(x)+2x3<2
Commented by TANMAY PANACEA. last updated on 03/Apr/20
is it (2+log_2 x)  or log_2 (x+2)
isit(2+log2x)orlog2(x+2)
Commented by john santu last updated on 03/Apr/20
2+ log_2 (x) sir
2+log2(x)sir
Commented by john santu last updated on 03/Apr/20
i can^′ t answer that
icantanswerthat
Commented by john santu last updated on 03/Apr/20
the choice answer is   a) x < 2^3  or x > 2^8   b) 3 < x < 8  c) x < 3 or x > 8  d) 2^3  < x < 2^8   e) 0 < x < 2^3  or x > 2^8
thechoiceanswerisa)x<23orx>28b)3<x<8c)x<3orx>8d)23<x<28e)0<x<23orx>28
Commented by jagoll last updated on 03/Apr/20
may be the question is   ∣log_2  (((x+2)/(x−3)))∣ < 2
maybethequestionislog2(x+2x3)<2
Commented by jagoll last updated on 03/Apr/20
−2 < log_2  (((x+2)/(x−3))) < 2  2^(−2)  < ((x+2)/(x−3)) < 2^2   ⇒  { ((((x+2)/(x−3)) > (1/4))),((((x+2)/(x−3)) < 4)) :}
2<log2(x+2x3)<222<x+2x3<22{x+2x3>14x+2x3<4
Answered by TANMAY PANACEA. last updated on 03/Apr/20
((∣2+log_2 x∣)/(x−3))−2<0  1)x≠3   and x≠0  assume x=2^k    k>0  ((∣2+k∣)/(2^k −3))−2  =((2+k)/(2^k −3))−2  when k=1  ((2+1)/(2−3))−2<0  when k=2  ((2+2)/(4−3))−2>0  (note here )  when k=3  ((2+3)/(8−3))−2<0  k=4  ((2+4)/(16−3))−2<0
2+log2xx32<01)x3andx0assumex=2kk>02+k2k32=2+k2k32whenk=12+1232<0whenk=22+2432>0(notehere)whenk=32+3832<0k=42+41632<0
Answered by MJS last updated on 03/Apr/20
((∣2+log_2  x∣)/(x−3))<2 ⇒ x∈R\{0, 3}    (1)  2+log_2  x ≥0 ⇒ x≥(1/4)  ((2+log_2  x)/(x−3))<2  (1.1) (1/4)≤x<3 ⇒ x−3<0  256x>4^x  ⇒ ≈.00392758<x<≈5.18752  ⇒ (1/4)≤x<3 •  (1.2) x>3 ⇒ x−3>0  256x<4^x  ⇒ x<≈.00392758∨x>≈5.28752  ⇒ x>≈5.28752 •  (2) 2+log_2  x <0 ⇒ x<(1/4) ⇒ x−3<0  ((−(2+log_2  x))/(x−3))<2 always true because lhs<0  ⇒ x<0∨0<x<(1/4) •    ⇒ x<0∨0<x<3∨x>≈5.28752
2+log2xx3<2xR{0,3}(1)2+log2x0x142+log2xx3<2(1.1)14x<3x3<0256x>4x.00392758<x<≈5.1875214x<3(1.2)x>3x3>0256x<4xx<≈.00392758x>≈5.28752x>≈5.28752(2)2+log2x<0x<14x3<0(2+log2x)x3<2alwaystruebecauselhs<0x<00<x<14x<00<x<3x>≈5.28752
Commented by MJS last updated on 03/Apr/20
even if the question is wrong, we can solve it
evenifthequestioniswrong,wecansolveit
Commented by jagoll last updated on 03/Apr/20
but x < 0 not valid sir  log_2 (x) ⇒ must be x > 0
butx<0notvalidsirlog2(x)mustbex>0
Commented by MJS last updated on 03/Apr/20
you are right... but ∣2+log_2  x∣ ∈R∀x≠0 ...  I′ll look into this again later
youarerightbut2+log2xRx0Illlookintothisagainlater
Commented by MJS last updated on 03/Apr/20
log_2  x =((ln x)/(ln 2))  for x∈C  ((ln x)/(ln 2))=((ln (re^(iθ) ))/(ln 2))=((ln r +iθ)/(ln 2))  ∣((ln r +iθ)/(ln 2))∣=((√(θ^2 +(ln r)^2 ))/(ln 2))  for x∈R^− : θ=π ⇒ ∣2+log_2  x∣≥0    ⇒ in our case for x<0 the equation is true
log2x=lnxln2forxClnxln2=ln(reiθ)ln2=lnr+iθln2lnr+iθln2∣=θ2+(lnr)2ln2forxR:θ=π2+log2x∣⩾0inourcaseforx<0theequationistrue
Commented by john santu last updated on 03/Apr/20
ooo if x ∈C sir.   so the choice answer nothing correct  sir
oooifxCsir.sothechoiceanswernothingcorrectsir

Leave a Reply

Your email address will not be published. Required fields are marked *