Menu Close

Find-the-solution-of-recurrence-relation-a-n-2a-n-1-3a-n-2-with-a-0-1-a-1-2-




Question Number 56864 by Joel578 last updated on 25/Mar/19
Find the solution of recurrence relation  a_n  = 2a_(n−1)  + 3a_(n−2) , with a_0  = 1, a_1  = 2
Findthesolutionofrecurrencerelationan=2an1+3an2,witha0=1,a1=2
Commented by maxmathsup by imad last updated on 25/Mar/19
⇒a_(n+2) =2a_(n+1)  +3 a_n  ⇒a_(n+2) −2a_(n+1) −3a_n =0 ⇒caracteristic equation is  x^2  −2x−3 =0 ⇒Δ^′ =1+3=4 ⇒x_1 =1+2=3 and x_2 =1−2=−1  ⇒  a_n =α 3^n  +β (−1)^n    initial conditions  a_0 =1=α+β   and  a_1 =2=3α −β ⇒α+β =1 and 3α−β=2 ⇒3α−(1−α)=2 ⇒  4α =3 ⇒α=(3/4) ⇒β=1−(3/4) =(1/4)  ⇒a_n =(3/4) 3^n  +(((−1)^n )/4) ⇒  a_n =(1/4){3^(n+1)  +(−1)^n }
an+2=2an+1+3anan+22an+13an=0caracteristicequationisx22x3=0Δ=1+3=4x1=1+2=3andx2=12=1an=α3n+β(1)ninitialconditionsa0=1=α+βanda1=2=3αβα+β=1and3αβ=23α(1α)=24α=3α=34β=134=14an=343n+(1)n4an=14{3n+1+(1)n}
Commented by Joel578 last updated on 26/Mar/19
thank you very much
thankyouverymuch
Commented by turbo msup by abdo last updated on 26/Mar/19
you are welcome
youarewelcome
Answered by mr W last updated on 25/Mar/19
let a_n =Ap^n +Bq^n   ⇒ Ap^n +Bq^n =2Ap^(n−1) +2Bq^(n−1) +3Ap^(n−2) +3Bq^(n−2)   ⇒ A(p^2 −2p−3)p^(n−2) +B(q^2 −2q−3)q^(n−2) =0  ⇒p and q are roots of  x^2 −2x−3=0  (x+1)(x−3)=0  ⇒p=−1 and q=3  ⇒a_n =A×(−1)^n +B×3^n   ⇒a_0 =A+B=1   ...(i)  ⇒a_1 =−A+3B=2   ...(ii)  ⇒A=(1/4)  ⇒B=(3/4)  ⇒a_n =(1/4)[(−1)^n +3^(n+1) ]
letan=Apn+BqnApn+Bqn=2Apn1+2Bqn1+3Apn2+3Bqn2A(p22p3)pn2+B(q22q3)qn2=0pandqarerootsofx22x3=0(x+1)(x3)=0p=1andq=3an=A×(1)n+B×3na0=A+B=1(i)a1=A+3B=2(ii)A=14B=34an=14[(1)n+3n+1]
Commented by Joel578 last updated on 26/Mar/19
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *