Menu Close

Find-the-solution-set-of-inequality-3x-4-x-2-




Question Number 153070 by bobhans last updated on 04/Sep/21
   Find the solution set of inequality         (√(3x+4)) ≥ x−2
Findthesolutionsetofinequality3x+4x2
Answered by Rasheed.Sindhi last updated on 04/Sep/21
       (√(3x+4)) ≥ x−2          ( (√(3x+4)) ≥ x−2 )^2         3x+4≥x^2 −4x+4        x^2 −7x≤0        x(x−7)≤0   (x≤0 ∧ x−7≥0) ∨ (x≥0∧x−7≤0)   (x≤0 ∧ x≥7) ∨ (x≥0∧x≤7)                    0≤x≤7
3x+4x2(3x+4x2)23x+4x24x+4x27x0x(x7)0(x0x70)(x0x70)(x0x7)(x0x7)0x7
Commented by MJS_new last updated on 04/Sep/21
(√(3x+4)) defined for x≥−(4/3)  (√(3x+4))=x−2 ⇒ only one solution (squaring  leads to false solutions): x=7  ⇒  the inequality holds for −(4/3)≤x≤7
3x+4definedforx433x+4=x2onlyonesolution(squaringleadstofalsesolutions):x=7theinequalityholdsfor43x7
Commented by Rasheed.Sindhi last updated on 04/Sep/21
THANKS Sir! I think Ineed more  study regarding the topic.
THANKSSir!IthinkIneedmorestudyregardingthetopic.
Answered by john_santu last updated on 04/Sep/21
  { ((x≥−(4/3); when x−2<0 we get solution −(4/3)≤x<2)),((when x−2≥0;x≥2⇒squaring both sides)) :}  ⇒3x+4 ≥ x^2 −4x+4  ⇒x^2 −7x≤0 ; 0≤x≤7 we get solution 2≤x≤7  Therefore the solution set is    ⇒x ∈ [−(4/3), 7 ]
{x43;whenx2<0wegetsolution43x<2whenx20;x2squaringbothsides3x+4x24x+4x27x0;0x7wegetsolution2x7Thereforethesolutionsetisx[43,7]
Answered by talminator2856791 last updated on 04/Sep/21
    0 ≥ x−2 − (√(3x+4))   0 ≥ ((x−2)−(√(3x+4)))((x−2)+(√(3x+4)))   0 ≥ (x−2)^2 −(3x+4)   0 ≥ x^2 −4x+4 − 3x−4   0 ≥ x^2  − 7x    0 ≥ x(x−7)   0 ≤ x ≤ 7
0x23x+40((x2)3x+4)((x2)+3x+4)0(x2)2(3x+4)0x24x+43x40x27x0x(x7)0x7
Commented by MJS_new last updated on 04/Sep/21
0≥((x−2)−(√(3x+4)))((x−2)+(√(3x+4)))       if (x−2)+(√(3x+4))≥0 ⇔ x≥0  0≥((x−2)−(√(3x+4)))((x−2)+(√(3x+4)))       if (x−2)+(√(3x+4))<0 ⇔ −(4/3)≤x<0    anyway you cannot solve it this way  y_1 =x−2 is a straight line  y_2 =(√(3x+4)) is a half parabola  how ever you reach 3x+4 you get false solutions  (√(3x+4)) is defined for x≥−(4/3)  x−2=(√(3x+4)) has only 1 solution: x=7  it′s easy to show that  x−2<(√(3x+4)) for −(4/3)≤x<0  and from both x−2 and (√(3x+4)) strictly  increasing it follows that x−2>(√(3x+4)) for  x>7  ⇒ solution is −(4/3)≤x≤7
0((x2)3x+4)((x2)+3x+4)if(x2)+3x+40x00((x2)3x+4)((x2)+3x+4)if(x2)+3x+4<043x<0anywayyoucannotsolveitthiswayy1=x2isastraightliney2=3x+4isahalfparabolahoweveryoureach3x+4yougetfalsesolutions3x+4isdefinedforx43x2=3x+4hasonly1solution:x=7itseasytoshowthatx2<3x+4for43x<0andfrombothx2and3x+4strictlyincreasingitfollowsthatx2>3x+4forx>7solutionis43x7

Leave a Reply

Your email address will not be published. Required fields are marked *