Question Number 82191 by jagoll last updated on 19/Feb/20
$${find}\:{the}\:{solution} \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:}\:\:>\:\:{x}−\mathrm{2}\: \\ $$
Commented by arkanmath7@gmail.com last updated on 19/Feb/20
$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:\:\:>\:\:{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4} \\ $$$$−\mathrm{3}{x}−\mathrm{4}\:\:\:>\:\:−\mathrm{4}{x}+\mathrm{4} \\ $$$${x}\:\:\:>\:\:\mathrm{8} \\ $$$${S}.{S}.\:=\:\left\{{x}:{x}>\mathrm{8}\right\}\: \\ $$$${Or}\:{S}.{S}.=\left\{\left(\mathrm{8},\infty\right)\right\} \\ $$$${so}\:{easy} \\ $$
Commented by jagoll last updated on 19/Feb/20
$${tes}\:{for}\:{x}\:=\:−\mathrm{1}\: \\ $$$$\sqrt{\mathrm{1}+\mathrm{3}−\mathrm{4}}\:>\:−\mathrm{3}\: \\ $$$$\mathrm{0}\:>\:−\mathrm{3}\:{is}\:{correct}\:{sir} \\ $$
Commented by jagoll last updated on 19/Feb/20
$${x}\:=\:−\mathrm{1}\:\notin\:\left(\mathrm{8},\infty\right)\:{but}\:{x}=−\mathrm{1}\:{is}\:{solution} \\ $$
Commented by mr W last updated on 19/Feb/20
$$\sqrt{\left({x}−\mathrm{4}\right)\left({x}+\mathrm{1}\right)}>{x}−\mathrm{2} \\ $$$${solution}: \\ $$$${x}\leqslant−\mathrm{1}\:\vee\:{x}>\mathrm{8} \\ $$
Commented by arkanmath7@gmail.com last updated on 19/Feb/20
$${I}\:{think}\:{that}'{s}\:{true}\:{if}\:{you}\:{said}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:\geqslant\mathrm{0} \\ $$$${not}\:{when}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:>{x}−\mathrm{2} \\ $$$${put}\:{x}=−\mathrm{1}\:{in}\:{the}\:\mathrm{2}{nd}\:{line}\:{of}\:{the}\:{solution} \\ $$$${you}\:{will}\:{get}\:{a}\:{rong}\:{statement} \\ $$$$ \\ $$
Commented by Kunal12588 last updated on 19/Feb/20
$${x}\:>\:\mathrm{8}\: \\ $$$${and}\:\sqrt{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)}>\left({x}−\mathrm{2}\right) \\ $$$$\Rightarrow\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$$$\Rightarrow{x}<−\mathrm{1} \\ $$
Commented by mr W last updated on 19/Feb/20
$${why}\:{use}\:{if}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0}\:?\:{it}\:{is}\:{always} \\ $$$${true}\:{that}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0}. \\ $$
Commented by jagoll last updated on 19/Feb/20
$${so}\:{what}\:{is}\:{the}\:{answer}\:{conclusion}? \\ $$$${x}\leqslant−\mathrm{1}\:\vee{x}>\:\mathrm{8}\: \\ $$$${or}\:{x}\:>\:\mathrm{8}? \\ $$
Commented by mr W last updated on 19/Feb/20
$${when}\:{x}\leqslant−\mathrm{1},\:{x}−\mathrm{2}\leqslant−\mathrm{3},\:{but}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0},\:{therefore}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}>{x}−\mathrm{2}\:{is}\:{true}.\:{and}\:{x}=−\mathrm{1} \\ $$$${is}\:{also}\:{included}. \\ $$
Commented by mr W last updated on 19/Feb/20
$${the}\:{result}\:{is} \\ $$$${x}\leqslant−\mathrm{1}\:\vee\:{x}>\:\mathrm{8}\: \\ $$$${that}\:{means}\:{x}\in\:\left(−\infty,−\mathrm{1}\right]\:{or}\:{x}\in\left(\mathrm{8},+\infty\right) \\ $$
Commented by jagoll last updated on 19/Feb/20
$${yes}\:{sir}.\:{i}\:{agree}.\:{but}\:{my}\:{teacher}\: \\ $$$${blamed}\:{my}\:{answer} \\ $$
Commented by arkanmath7@gmail.com last updated on 19/Feb/20
$$ \\ $$$${confused}\:{quest} \\ $$$${i}\:{think}\:{you}\:{are}\:{the}\:{truest} \\ $$
Commented by jagoll last updated on 19/Feb/20
$${haha}…{if}\:{the}\:{most}\:{correct}\:,\: \\ $$$${surely}\:{God}\:{sir} \\ $$
Commented by mr W last updated on 19/Feb/20
$${be}\:{very}\:{careful}\:{with}\:{squaring}\:{by} \\ $$$${inequlity}!\:{it}\:{may}\:{change}\:{the}\:{validity} \\ $$$${range}\:{of}\:{the}\:{original}\:{inequality}! \\ $$
Commented by jagoll last updated on 19/Feb/20
$${please}\:{sir}\:{post}\:{your}\:{step}\:{solution} \\ $$
Commented by jagoll last updated on 19/Feb/20
Commented by jagoll last updated on 19/Feb/20
$${it}\:{sir}\:{by}\:{graphic} \\ $$
Commented by mathmax by abdo last updated on 19/Feb/20
$${the}\:{inequation}\:{is}\:{defined}\:\:{for}\:{x}\geqslant\mathrm{2}\:{and}\:{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\geqslant\mathrm{0} \\ $$$$\Delta=\left(−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{4}\right)=\mathrm{9}+\mathrm{16}=\mathrm{25}\:\Rightarrow{x}_{\mathrm{1}} =\frac{\mathrm{3}+\mathrm{5}}{\mathrm{2}}=\mathrm{4}\:{and}\:{x}_{\mathrm{2}} =\frac{\mathrm{3}−\mathrm{5}}{\mathrm{2}}=−\mathrm{1} \\ $$$$\left.{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\geqslant\mathrm{0}\:\Rightarrow{x}\in\right]−\infty,−\mathrm{1}\left[\cup\right]\mathrm{4},+\infty\left[\:\Rightarrow\:{D}_{{in}} =\left[\mathrm{2},+\infty\left[\right.\right.\right. \\ $$$$\left({in}\right)\Rightarrow{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}>{x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{4}\:\Rightarrow{x}>\mathrm{8}\:\Rightarrow{S}\:=\left[\mathrm{8},+\infty\left[\right.\right. \\ $$
Commented by jagoll last updated on 19/Feb/20
$${solution}\:{x}\leqslant−\mathrm{1}\:\vee\:{x}>\mathrm{8} \\ $$
Answered by mr W last updated on 19/Feb/20
$${such}\:{that}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:{is}\:{defined}, \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}=\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}\leqslant−\mathrm{1}\:{or}\:{x}\geqslant\mathrm{4} \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{x}\leqslant−\mathrm{1} \\ $$$${with}\:{x}\leqslant−\mathrm{1},\:{we}\:{have}\:{x}−\mathrm{2}\leqslant−\mathrm{3}<\mathrm{0} \\ $$$${but}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0},\:{so} \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:}\:>\:\:{x}−\mathrm{2}\:\:{is}\:{true}. \\ $$$$\Rightarrow{x}\leqslant−\mathrm{1}\:{is}\:{solution}. \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{x}\geqslant\mathrm{4} \\ $$$${with}\:{x}\geqslant\mathrm{4},\:{x}−\mathrm{2}\geqslant\mathrm{6}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:>\left({x}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:>{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4} \\ $$$${x}>\mathrm{8}\:\geqslant\mathrm{4} \\ $$$$\Rightarrow{x}>\mathrm{8}\:{is}\:{solution}. \\ $$$$\left({we}\:{can}\:{use}\:{squaring}\:{here}\:{because}\:{we}\right. \\ $$$$\left.{have}\:{ensured}\:{at}\:{first}\:{that}\:{x}−\mathrm{2}>\mathrm{0}\right) \\ $$$$ \\ $$$${summary}\:{of}\:{all}\:{solutions}: \\ $$$${x}\leqslant−\mathrm{1} \\ $$$${x}>\mathrm{8} \\ $$
Commented by jagoll last updated on 19/Feb/20
$${thank}\:{you}\:{sir} \\ $$