Question Number 82245 by jagoll last updated on 19/Feb/20
$${find}\:{the}\:{solution}\: \\ $$$${x}\:\mathrm{sin}\:\left(\frac{{y}}{{x}}\right)\:{dy}\:=\:\left[{y}\:\mathrm{sin}\:\left(\frac{{y}}{{x}}\right)\:−{x}\right]\:{dx} \\ $$
Commented by john santu last updated on 19/Feb/20
$${let}\:{v}\:=\:\frac{{y}}{{x}}\:\Rightarrow\:{y}\:=\:{vx} \\ $$$$\frac{{dy}}{{dx}}\:=\:{v}\:+\:\frac{{dv}}{{dx}}\:\Rightarrow\:{dy}\:={v}\:{dx}+\:{dv}\: \\ $$$$\left({x}\:\mathrm{sin}\:{v}\right)\left({v}\:{dx}\:+\:{dv}\right)\:=\:\left[{vx}\:\mathrm{sin}\:{v}−{x}\right]{dx} \\ $$$${xv}\:\mathrm{sin}\:{v}\:{dx}\:+\:{x}\mathrm{sin}\:{v}\:{dv}\:=\:{xv}\:\mathrm{sin}\:{v}\:{dx}−{x}\:{dx} \\ $$$${x}\:\mathrm{sin}\:{v}\:{dv}\:=\:−{x}\:{dx} \\ $$$$\mathrm{sin}\:{v}\:{dv}\:=\:−{dx}\:\Rightarrow\int\:\mathrm{sin}\:{v}\:{dv}\:=\:−{x}+{c} \\ $$$$−\mathrm{cos}\:{v}\:=\:−{x}\:+{c}\: \\ $$$$\mathrm{cos}\:\left(\frac{{y}}{{x}}\right)\:=\:{x}\:+\:{C}\: \\ $$
Commented by jagoll last updated on 19/Feb/20
$${thank}\:{sir} \\ $$