Question Number 113913 by Aina Samuel Temidayo last updated on 16/Sep/20

Answered by 1549442205PVT last updated on 16/Sep/20
![We have ((√(50))+(√(48)))^2 =98+2(√(50.48)) =98+2(√(25.16.6))=98+40(√6) Hence (√((√(50))+(√(48))))=^4 (√(((√(50))+(√(48)))^2 )) =^4 (√(98+40(√6)))=^4 (√((a(√2)+b(√3))^4 )) (1) We need find a,b so that 98+40(√6)=(a(√2)+b(√3))^4 =4a^4 +8a^3 (√2).b(√3)+6.2a^2 .3b^2 +4.3b^3 (√3).a(√2) +9b^4 =(4a^4 +9b^4 +36a^2 b^2 +(8a^3 b+12ab^3 )(√6) ⇔ { ((4a^4 +36a^2 b^2 +9b^4 =98)),((8a^3 b+12ab^3 =40)) :} ⇔ { ((4a^4 +36a^2 b^2 +9b^4 =98)),((2a^3 b+3ab^3 =10(2))) :} ⇔10(4a^4 +36a^2 b^2 +9b^4 )=98(2a^3 b+3ab^3 ) Put a=kb substituting into above equality then divide two sides by k^4 we get 40k^4 +360k^2 +90=196k^3 +294k ⇔20k^4 −98k^3 +180k^2 −147k+45=0 This equation has one root k=1 ⇒a=b.Replace into (2)we get 5a^4 =10⇔a=^4 (√2).Replace into (1) we have (√((√(50))+(√(48))))=^4 (√(98+40(√6))) =^4 (√([^4 (√2)((√2)+(√3))]^4 )) =^4 (√2) ((√2)+(√3)) Thus, (√((√(50))+(√(48))))=^4 (√2) ((√2)+(√3))](https://www.tinkutara.com/question/Q113918.png)
Commented by Aina Samuel Temidayo last updated on 16/Sep/20

Answered by mr W last updated on 16/Sep/20
![(√(50))+(√(48)) =(√2)(5+2(√6)) =(√2)[((√2))^2 +2(√2)(√3)+((√3))^2 ] =(√2)[(√2)+(√3)]^2 ⇒(√((√(50))+(√(48))))=(2)^(1/4) ((√2)+(√3))](https://www.tinkutara.com/question/Q113924.png)
Answered by Dwaipayan Shikari last updated on 16/Sep/20

Commented by Dwaipayan Shikari last updated on 16/Sep/20

Commented by Rasheed.Sindhi last updated on 16/Sep/20
