Menu Close

Find-the-square-root-of-50-48-




Question Number 113913 by Aina Samuel Temidayo last updated on 16/Sep/20
Find the square root of (√(50))+(√(48))
Findthesquarerootof50+48
Answered by 1549442205PVT last updated on 16/Sep/20
We have ((√(50))+(√(48)))^2 =98+2(√(50.48))  =98+2(√(25.16.6))=98+40(√6)  Hence (√((√(50))+(√(48))))=^4 (√(((√(50))+(√(48)))^2 ))  =^4 (√(98+40(√6)))=^4 (√((a(√2)+b(√3))^4 )) (1)  We need find a,b so that  98+40(√6)=(a(√2)+b(√3))^4   =4a^4 +8a^3 (√2).b(√3)+6.2a^2 .3b^2 +4.3b^3 (√3).a(√2)  +9b^4 =(4a^4 +9b^4 +36a^2 b^2 +(8a^3 b+12ab^3 )(√6)  ⇔ { ((4a^4 +36a^2 b^2 +9b^4 =98)),((8a^3 b+12ab^3 =40)) :}  ⇔ { ((4a^4 +36a^2 b^2 +9b^4 =98)),((2a^3 b+3ab^3 =10(2))) :}  ⇔10(4a^4 +36a^2 b^2 +9b^4 )=98(2a^3 b+3ab^3 )  Put a=kb substituting into above  equality then divide two sides by k^4   we get 40k^4 +360k^2 +90=196k^3 +294k  ⇔20k^4 −98k^3 +180k^2 −147k+45=0  This equation has one root k=1  ⇒a=b.Replace into (2)we get  5a^4 =10⇔a=^4 (√2).Replace into (1)  we have (√((√(50))+(√(48))))=^4 (√(98+40(√6)))  =^4 (√([^4 (√2)((√2)+(√3))]^4 )) =^4 (√2) ((√2)+(√3))   Thus, (√((√(50))+(√(48))))=^4 (√2) ((√2)+(√3))
Wehave(50+48)2=98+250.48=98+225.16.6=98+406Hence50+48=4(50+48)2=498+406=4(a2+b3)4(1)Weneedfinda,bsothat98+406=(a2+b3)4=4a4+8a32.b3+6.2a2.3b2+4.3b33.a2+9b4=(4a4+9b4+36a2b2+(8a3b+12ab3)6{4a4+36a2b2+9b4=988a3b+12ab3=40{4a4+36a2b2+9b4=982a3b+3ab3=10(2)10(4a4+36a2b2+9b4)=98(2a3b+3ab3)Puta=kbsubstitutingintoaboveequalitythendividetwosidesbyk4weget40k4+360k2+90=196k3+294k20k498k3+180k2147k+45=0Thisequationhasonerootk=1a=b.Replaceinto(2)weget5a4=10a=42.Replaceinto(1)wehave50+48=498+406=4[42(2+3)]4=42(2+3)Thus,50+48=42(2+3)
Commented by Aina Samuel Temidayo last updated on 16/Sep/20
Thanks.
Thanks.
Answered by mr W last updated on 16/Sep/20
(√(50))+(√(48))  =(√2)(5+2(√6))  =(√2)[((√2))^2 +2(√2)(√3)+((√3))^2 ]  =(√2)[(√2)+(√3)]^2   ⇒(√((√(50))+(√(48))))=(2)^(1/4) ((√2)+(√3))
50+48=2(5+26)=2[(2)2+223+(3)2]=2[2+3]250+48=24(2+3)
Answered by Dwaipayan Shikari last updated on 16/Sep/20
Generally (√x)+(√y) =(√(a+(√b)))  x+y+2(√(xy))     =a+(√b)  (x+y)=a  4xy=b  (x−y)=(√(a^2 −b))  (√x)+(√y) =((√(a+(√(a^2 −b))))/( (√2)))+(√((a−(√(a^2 −b)))/2))                 =(√(((√(50))+(√2))/2))+(√((((√(50))−(√2))/2) ))       a=(√(50))    b=48
Generallyx+y=a+bx+y+2xy=a+b(x+y)=a4xy=b(xy)=a2bx+y=a+a2b2+aa2b2=50+22+5022a=50b=48
Commented by Dwaipayan Shikari last updated on 16/Sep/20
(√((√(49))+(√(48)))) =(√(((√(49))+1)/2)) +(√(((√(49))−1)/2)) =2+(√3) =(√(8/2)) +(√(6/2))  (√((√(64))+(√(63)))) =(√((8+1)/2)) +(√(((8−1)/2) )) =(√(9/2))+(√(7/2))  (√((√(100))+(√(99)))) =(√(((11)/2) )) +(√(9/2))  (√((√(81))+(√(80))))  =(√((10)/2)) +(√(9/2))  Have you noticed any pattern?  (√1) =(√((2/2) ))+(√(0/2))  (√((√4)+(√3)))  =(√(3/2)) +(√(1/2))  (√((√9)+(√8))) =(√(4/2))+(√(2/2))  (√((√(16))+(√(15))))=(√(5/2)) +(√(3/2))  (√((√(25))+(√(24)))) =(√(6/2)) +(√(4/2))  (√((√(36))+(√(35))))=(√(7/2))+(√(5/2))  (√((√n^2 )+(√(n^2 −1))))   =(√((n+1)/2)) +(√((n−1)/2))  (√(n+(√(n^2 −1)))) =(√((n+1)/2)) +(√((n−1)/2))
49+48=49+12+4912=2+3=82+6264+63=8+12+812=92+72100+99=112+9281+80=102+92Haveyounoticedanypattern?1=22+024+3=32+129+8=42+2216+15=52+3225+24=62+4236+35=72+52n2+n21=n+12+n12n+n21=n+12+n12
Commented by Rasheed.Sindhi last updated on 16/Sep/20
Actual learning from your  general method! Thank you.
Actuallearningfromyourgeneralmethod!Thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *