Menu Close

find-the-stationary-points-of-the-function-U-x-2-y-2-subjects-to-the-constraint-x-2-y-2-2x-2y-1-0-




Question Number 115922 by mathdave last updated on 29/Sep/20
find the stationary points of the  function U=x^2 +y^2  subjects to  the constraint   x^2 +y^2 +2x−2y+1=0
findthestationarypointsofthefunctionU=x2+y2subjectstotheconstraintx2+y2+2x2y+1=0
Answered by bemath last updated on 29/Sep/20
f(x,y,λ)=x^2 +y^2 +λ(x^2 +y^2 +2x−2y+1)  (∂f/∂x) = 2x+λ(2x+2)=0→λ=((−2x)/(2x+2))  (∂f/∂y) = 2y+λ(2y−2)=0→λ=((2y)/(2−2y))  (∂f/∂λ)= x^2 +y^2 +2x−2y+1=0  ⇔ (x/(2x+2)) = (y/(2y−2)) ⇒2xy−2x=2xy+2y  y=−x ⇒x^2 +x^2 +2x+2x+1=0  2x^2 +4x+1=0 ; x^2 +2x+(1/2)=0  (x+1)^2 −(1/2)=0 ⇒x=±(1/( (√2)))−1  and y = ∓(1/( (√2)))+1
f(x,y,λ)=x2+y2+λ(x2+y2+2x2y+1)fx=2x+λ(2x+2)=0λ=2x2x+2fy=2y+λ(2y2)=0λ=2y22yfλ=x2+y2+2x2y+1=0x2x+2=y2y22xy2x=2xy+2yy=xx2+x2+2x+2x+1=02x2+4x+1=0;x2+2x+12=0(x+1)212=0x=±121andy=12+1

Leave a Reply

Your email address will not be published. Required fields are marked *