Menu Close

find-the-stationary-points-of-the-function-U-x-2-y-2-subjects-to-the-constraint-x-2-y-2-2x-2y-1-0-




Question Number 115922 by mathdave last updated on 29/Sep/20
find the stationary points of the  function U=x^2 +y^2  subjects to  the constraint   x^2 +y^2 +2x−2y+1=0
$${find}\:{the}\:{stationary}\:{points}\:{of}\:{the} \\ $$$${function}\:{U}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{subjects}\:{to} \\ $$$${the}\:{constraint}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$
Answered by bemath last updated on 29/Sep/20
f(x,y,λ)=x^2 +y^2 +λ(x^2 +y^2 +2x−2y+1)  (∂f/∂x) = 2x+λ(2x+2)=0→λ=((−2x)/(2x+2))  (∂f/∂y) = 2y+λ(2y−2)=0→λ=((2y)/(2−2y))  (∂f/∂λ)= x^2 +y^2 +2x−2y+1=0  ⇔ (x/(2x+2)) = (y/(2y−2)) ⇒2xy−2x=2xy+2y  y=−x ⇒x^2 +x^2 +2x+2x+1=0  2x^2 +4x+1=0 ; x^2 +2x+(1/2)=0  (x+1)^2 −(1/2)=0 ⇒x=±(1/( (√2)))−1  and y = ∓(1/( (√2)))+1
$${f}\left({x},{y},\lambda\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\lambda\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{1}\right) \\ $$$$\frac{\partial{f}}{\partial{x}}\:=\:\mathrm{2}{x}+\lambda\left(\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{0}\rightarrow\lambda=\frac{−\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{2}} \\ $$$$\frac{\partial{f}}{\partial{y}}\:=\:\mathrm{2}{y}+\lambda\left(\mathrm{2}{y}−\mathrm{2}\right)=\mathrm{0}\rightarrow\lambda=\frac{\mathrm{2}{y}}{\mathrm{2}−\mathrm{2}{y}} \\ $$$$\frac{\partial{f}}{\partial\lambda}=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\Leftrightarrow\:\frac{{x}}{\mathrm{2}{x}+\mathrm{2}}\:=\:\frac{{y}}{\mathrm{2}{y}−\mathrm{2}}\:\Rightarrow\mathrm{2}{xy}−\mathrm{2}{x}=\mathrm{2}{xy}+\mathrm{2}{y} \\ $$$${y}=−{x}\:\Rightarrow{x}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\mathrm{0}\:;\:{x}^{\mathrm{2}} +\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}\:\Rightarrow{x}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{1} \\ $$$${and}\:{y}\:=\:\mp\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *