Menu Close

Find-the-sum-1-1-2-2-1-3-2-1-1-3-2-1-4-2-1-1-999-2-1-1000-2-




Question Number 91068 by Maclaurin Stickker last updated on 27/Apr/20
Find the sum  (√(1+(1/2^2 )+(1/3^2 )))+(√(1+(1/3^2 )+(1/4^2 )))+...+(√(1+(1/(999^2 ))+(1/(1000^2 ))))
$${Find}\:{the}\:{sum} \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }}+…+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{999}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1000}^{\mathrm{2}} }} \\ $$
Answered by mr W last updated on 28/Apr/20
(√(1+(1/n^2 )+(1/((n+1)^2 ))))=((n^2 +n+1)/(n(n+1)))=1+(1/n)−(1/(n+1))  Σ_(n=2) ^(999) (√(1+(1/n^2 )+(1/((n+1)^2 ))))  =998+(1/2)−(1/(1000))
$$\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }}=\frac{{n}^{\mathrm{2}} +{n}+\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}=\mathrm{1}+\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\mathrm{999}} {\sum}}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=\mathrm{998}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{1000}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *