Question Number 91328 by Maclaurin Stickker last updated on 30/Apr/20
$${Find}\:{the}\:{sum} \\ $$$$\frac{\mathrm{9}}{\mathrm{1}+\sqrt{\mathrm{2}}}+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{2}}\rfloor}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}}+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{3}}\rfloor}{\:\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}}+…+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{99}}\rfloor}{\:\sqrt{\mathrm{99}}+\sqrt{\mathrm{100}}} \\ $$$$\lfloor{x}\rfloor={the}\:{greatest}\:{integer}\:{function} \\ $$
Commented by Prithwish Sen 1 last updated on 30/Apr/20
$$\lfloor\sqrt{\mathrm{1}}\rfloor\:\mathrm{to}\:\lfloor\sqrt{\mathrm{3}}\rfloor\:\:\:\backsim\:\:\mathrm{1}\: \\ $$$$\lfloor\sqrt{\mathrm{4}}\rfloor\:\:\mathrm{to}\:\lfloor\sqrt{\mathrm{8}}\rfloor\:\:\backsim\:\:\mathrm{2} \\ $$$$\lfloor\sqrt{\mathrm{9}}\rfloor\:\mathrm{to}\:\:\lfloor\sqrt{\mathrm{15}}\rfloor\backsim\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::\: \\ $$$$\lfloor\sqrt{\mathrm{81}}\rfloor\:\mathrm{to}\:\lfloor\sqrt{\mathrm{99}}\rfloor\:\backsim\:\mathrm{9} \\ $$$$\therefore\:\mathrm{the}\:\mathrm{series}\:\mathrm{becomes} \\ $$$$\mathrm{9}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}+\sqrt{\mathrm{2}}}\:+..+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}}\right)+\mathrm{8}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}}+\sqrt{\mathrm{5}}}+..+\frac{\mathrm{1}}{\:\sqrt{\mathrm{8}}+\sqrt{\mathrm{9}}}\right) \\ $$$$+\mathrm{7}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{9}}+\sqrt{\mathrm{10}}}+..+\frac{\mathrm{1}}{\:\sqrt{\mathrm{15}}+\sqrt{\mathrm{16}}}\right)\:+……\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{64}}+\sqrt{\mathrm{65}}}+..\right. \\ $$$$\left.\frac{\mathrm{1}}{\:\sqrt{\mathrm{80}}+\sqrt{\mathrm{81}}}\right)+\mathrm{1}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{81}}+\sqrt{\mathrm{82}}}\:+..+\frac{\mathrm{1}}{\:\sqrt{\mathrm{99}}+\sqrt{\mathrm{100}}}\right) \\ $$$$=\mathrm{9}\left(\sqrt{\mathrm{4}}−\mathrm{1}\right)+\mathrm{8}\left(\sqrt{\mathrm{9}}−\sqrt{\mathrm{4}}\right)+\mathrm{7}\left(\sqrt{\mathrm{16}}−\sqrt{\mathrm{9}}\right)+….+\mathrm{2}\left(\sqrt{\mathrm{81}}−\sqrt{\mathrm{64}}\right) \\ $$$$+\mathrm{1}\left(\sqrt{\mathrm{100}}−\sqrt{\mathrm{81}}\right) \\ $$$$=\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1} \\ $$$$=\mathrm{45}\:\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$
Commented by Prithwish Sen 1 last updated on 30/Apr/20
$$\mathrm{35}+\mathrm{3}\sqrt{\mathrm{11}} \\ $$
Commented by mr W last updated on 30/Apr/20
$${nice}\:{solution}! \\ $$
Commented by Prithwish Sen 1 last updated on 30/Apr/20
$$\mathrm{am}\:\mathrm{I}\:\mathrm{wrong}\:\mathrm{Sir}\:? \\ $$
Commented by Prithwish Sen 1 last updated on 30/Apr/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:!\:\mathrm{I}\:\mathrm{fix}\:\mathrm{it}. \\ $$
Commented by Prithwish Sen 1 last updated on 30/Apr/20
$$\mathrm{Thanks}\:\mathrm{Sir}\:! \\ $$
Commented by Maclaurin Stickker last updated on 30/Apr/20
$${the}\:{answer}\:{is}\:\mathrm{135} \\ $$
Commented by mr W last updated on 30/Apr/20
$${if}\:{the}\:{answer}\:{is}\:\mathrm{135},\:{then}\:{your}\:{question} \\ $$$${is}\:{wrong}.\:{please}\:{recheck}! \\ $$
Commented by Maclaurin Stickker last updated on 30/Apr/20
$${I}\:{think}\:{the}\:{book}\:{is}\:{wrong}. \\ $$$${I}\:{will}\:{check}\:{the}\:{original}\:{question}. \\ $$