Menu Close

Find-the-sum-k-1-n-tan-1-2k-2-k-2-k-4-Answer-tan-1-n-2-n-1-pi-4-




Question Number 46032 by Tawa1 last updated on 20/Oct/18
Find the sum:    Σ_(k = 1) ^n  tan^(−1)  (((2k)/(2 + k^2  + k^4 )))    Answer:    tan^(−1) (n^2  + n + 1) − (π/4)
Findthesum:nk=1tan1(2k2+k2+k4)Answer:tan1(n2+n+1)π4
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18
T_k =tan^(−1) (((2k)/(1+1+k^2 +k^4 )))  now k^4 +k^2 +1        =(k^2 )^2 +2.k^2 .1+(1)^2 −k^2           =(k^2 +1)^2 −(k)^2            =(k^2 +1+k)(k^2 +1−k)  see  {(k^2 +k+1)−(k^2 −k+1)}  =2k  so T_k =tan^(−1) (((2k)/(1+k^2 +k^4 )))         =tan^(−1) [(({(k^2 +k+1)−(k^2 −k+1)})/(1+(k^2 +k+1)(k^2 −k+1)))]      =tan^(−1) (k^2 +k+1)−tan^(−1) (k^2 −k+1)    T_1 =tan^(−1) (3)−tan^(−1) (1)  T_2 =tan^(−1) (7)−tan^(−1) (3)  T_3 =tan^(−1) (13)−tan^(−1) (7)  ....  ....  T_n =tan^(−1) (n^2 +n+1)−tan^(−1) (n^2 −n+1)  add them  after addition only  tan^(−1) (n^2 +n+1)and tan^(−1) (1)  remains others terms cancels  so answer is S_n =tan^(−1) (n^2 +n+1)−tan^(−1) (1)       =tan^− (n^2 +n+1)−(π/4)    )
Tk=tan1(2k1+1+k2+k4)nowk4+k2+1=(k2)2+2.k2.1+(1)2k2=(k2+1)2(k)2=(k2+1+k)(k2+1k)see{(k2+k+1)(k2k+1)}=2ksoTk=tan1(2k1+k2+k4)=tan1[{(k2+k+1)(k2k+1)}1+(k2+k+1)(k2k+1)]=tan1(k2+k+1)tan1(k2k+1)T1=tan1(3)tan1(1)T2=tan1(7)tan1(3)T3=tan1(13)tan1(7)..Tn=tan1(n2+n+1)tan1(n2n+1)addthemafteradditiononlytan1(n2+n+1)andtan1(1)remainsotherstermscancelssoanswerisSn=tan1(n2+n+1)tan1(1)=tan(n2+n+1)π4)
Commented by Tawa1 last updated on 20/Oct/18
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *