Menu Close

find-the-sum-n-1-1-n-2-3-n-




Question Number 89313 by abdomathmax last updated on 16/Apr/20
find the sum  Σ_(n=1) ^∞   (1/(n^2 ×3^n ))
findthesumn=11n2×3n
Commented by mathmax by abdo last updated on 19/Apr/20
let find s(x)=Σ_(n=1) ^∞  (x^n /n^2 )  with ∣x∣<1  we have  Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒Σ_(n=0) ^∞  (x^(n+1) /(n+1)) =−ln(1−x) ⇒  Σ_(n=1) ^∞  (x^n /n) =−ln(1−x)⇒Σ_(n=1) ^∞  (x^(n−1) /n) =−((ln(1−x))/x) ⇒  Σ_(n=1) ^∞  (x^n /n^2 ) =−∫((ln(1−x))/x)dx +c =−∫_0 ^x  ((ln(1−t))/t) dt +c  s(x) =c−∫_0 ^x  ((ln(1−t))/t)dt  s(0)=0 =c ⇒s(x) =−∫_0 ^x  ((ln(1−t))/t)dt ⇒  Σ_(n=1) ^∞  (1/(n^2 ×3^n )) =s((1/3))=−∫_0 ^(1/3)  ((ln(1−t))/t)dt  =_(u=3t)      −3∫_0 ^1  ((ln(1−(u/3)))/u)×(du/3) =−∫_0 ^1  ((ln(1−(u/3)))/u) du  (u/3) =cosθ  give Σ(...)=−∫_(π/2) ^(arcos((1/3)))  ((ln(1−cosθ))/(3cosθ))(−3sinθ)dθ  =∫_(π/2) ^(arcos((1/3))) tanθln(2sin^2 ((θ/(2 ))))dθ  =ln(2)∫_(π/2) ^(arcos((1/3))) tanθ dθ+2 ∫_(π/2) ^(arcos((1/3)))  tanθ ln(sin((θ/2)))dθ  ∫_(π/2) ^(arcos((1/3)))   tanθ dθ =−ln∣cosθ∣]_(π/2) ^(arcos((1/3))) =−ln((1/3))=ln(3)  ....be continued....
letfinds(x)=n=1xnn2withx∣<1wehaven=0xn=11xn=0xn+1n+1=ln(1x)n=1xnn=ln(1x)n=1xn1n=ln(1x)xn=1xnn2=ln(1x)xdx+c=0xln(1t)tdt+cs(x)=c0xln(1t)tdts(0)=0=cs(x)=0xln(1t)tdtn=11n2×3n=s(13)=013ln(1t)tdt=u=3t301ln(1u3)u×du3=01ln(1u3)uduu3=cosθgiveΣ()=π2arcos(13)ln(1cosθ)3cosθ(3sinθ)dθ=π2arcos(13)tanθln(2sin2(θ2))dθ=ln(2)π2arcos(13)tanθdθ+2π2arcos(13)tanθln(sin(θ2))dθπ2arcos(13)tanθdθ=lncosθ]π2arcos(13)=ln(13)=ln(3).becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *