find-the-sum-n-1-1-n-2-3-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 89313 by abdomathmax last updated on 16/Apr/20 findthesum∑n=1∞1n2×3n Commented by mathmax by abdo last updated on 19/Apr/20 letfinds(x)=∑n=1∞xnn2with∣x∣<1wehave∑n=0∞xn=11−x⇒∑n=0∞xn+1n+1=−ln(1−x)⇒∑n=1∞xnn=−ln(1−x)⇒∑n=1∞xn−1n=−ln(1−x)x⇒∑n=1∞xnn2=−∫ln(1−x)xdx+c=−∫0xln(1−t)tdt+cs(x)=c−∫0xln(1−t)tdts(0)=0=c⇒s(x)=−∫0xln(1−t)tdt⇒∑n=1∞1n2×3n=s(13)=−∫013ln(1−t)tdt=u=3t−3∫01ln(1−u3)u×du3=−∫01ln(1−u3)uduu3=cosθgiveΣ(…)=−∫π2arcos(13)ln(1−cosθ)3cosθ(−3sinθ)dθ=∫π2arcos(13)tanθln(2sin2(θ2))dθ=ln(2)∫π2arcos(13)tanθdθ+2∫π2arcos(13)tanθln(sin(θ2))dθ∫π2arcos(13)tanθdθ=−ln∣cosθ∣]π2arcos(13)=−ln(13)=ln(3)….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: y-y-cos-x-1-2y-2-trouve-la-solution-de-lequation-differentielle-Next Next post: please-solve-question-no-23764-and-23765- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.