Question Number 110591 by Aina Samuel Temidayo last updated on 29/Aug/20

Answered by Rasheed.Sindhi last updated on 30/Aug/20
![Let N=10t+u is a number such that u ∣ 10t+u ∧ t ∣ 10t+u 10t+u=mu ∧ 10t+u=nt (N is common multiple of m & n) u=((10t)/(m−1)) ∧ u=t(n−10) ((10t)/(m−1))=t(n−10) t≠0(∵ The number is of 2-digit) ((10)/(m−1))=n−10 (m−1)(n−10)=10 m−1=a ∧ n−10=10/a [ Where a ∣ 10 ] ( m,n)=(a+1,10+((10)/a)) As N=common multiple of m & n or a+1 & 10+((10)/a). So, N=k lcm(a+1,10+((10)/a)) for some k (∈N) Four possible cases ^(★1) m−1=1 ∧ n−10=10 (m,n)=(2,20) N=k lcm(2,20) N=20^(×) ,40^(×) ,60^(×) ,80^(×) (No value of N) ^(★2) m−1=2 ∧ n−10=5 (m,n)=(3,15) N=klcm(3,15) N=15,30^(×) ,45^(×) ,60^(×) ,75^(×) ,90^(×) ^(★3) m−1=5 ∧ n−10=2 (m,n)=(6,12) N=klcm(12,6) N=12,24,36,48,60^(×) ,72^(×) ,84^(×) ,96^(×) ^(★4) m−1=10 ∧ n−10=1 (m,n)=(11,11) N=klcm(11,11) N=11,22,33,44,55,66,77,88,99 Red numbers are successful.](https://www.tinkutara.com/question/Q110609.png)
Commented by Aina Samuel Temidayo last updated on 29/Aug/20

Commented by Rasheed.Sindhi last updated on 30/Aug/20

Answered by floor(10²Eta[1]) last updated on 29/Aug/20

Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Commented by floor(10²Eta[1]) last updated on 30/Aug/20

Answered by mr W last updated on 30/Aug/20
