Menu Close

Find-the-sum-of-all-the-real-number-x-that-satisfy-2x-2-5x-1-2x-3-1-




Question Number 144260 by ZiYangLee last updated on 23/Jun/21
Find the sum of all the real number  x that satisfy (2x^2 +5x+1)^(2x−3) =1
Findthesumofalltherealnumberxthatsatisfy(2x2+5x+1)2x3=1
Answered by Ar Brandon last updated on 24/Jun/21
2x−3=0 ∨ 2x^2 +5x+1=1  x=(3/2) ∨ x=0, x=−(5/2)  2x^2 +5x+1>0
2x3=02x2+5x+1=1x=32x=0,x=522x2+5x+1>0
Answered by ArielVyny last updated on 24/Jun/21
solution 1 (1)^α =1  2x^2 +5x+1=1   x(2x+5)=0  x=0   x=−(5/2)  solution 2    α^0 =1  with α#0  2x−3=0   x=(3/2)  solution 3   (−1)^(2n) =1  2x^2 +5x+1=−1    2x^2 +5x+2=0  2[(x+(5/2))^2 −((25)/4)+(8/4)]=0  2[(x+(5/2))^2 −((17)/4)]=0  2[(x+(5/2)−((√(17))/2))(x+(5/2)+((√(17))/2))]=0  x_1 =−(5/2)+((√(17))/2)  and x_2 =−(5/2)−((√(17))/2)  then x_1  and x_2  are not peer  so in case 3 there is not solution  S={0.(3/2).−(5/2)}  we have 0+(3/2)−(5/2)=−1
\boldsymbolsolution1(1)α=12x2+5x+1=1x(2x+5)=0x=0x=52You can't use 'macro parameter character #' in math mode2x3=0x=32\boldsymbolsolution3(1)2\boldsymboln=12x2+5x+1=12x2+5x+2=02[(x+52)2254+84]=02[(x+52)2174]=02[(x+52172)(x+52+172)]=0x1=52+172andx2=52172thenx1andx2arenotpeersoincase3thereisnotsolutionS={0.32.52}wehave0+3252=1

Leave a Reply

Your email address will not be published. Required fields are marked *