Menu Close

find-the-sum-of-n-1-1-n-2-n-




Question Number 26401 by abdo imad last updated on 25/Dec/17
find the sum of    Σ_(n=1) ^∝   (1/(n  2^n ))  .
findthesumofn=11n2n.
Commented by abdo imad last updated on 25/Dec/17
let put S= Σ_(n=1) ^∝   (1/(n 2^n ))     S(x)= Σ_(n=1) ^∝  (x^n /n)  due to uniform convergence  of that serie  /x/<1 and for hid derivative we have  S^, (x)=   Σ_(n≥1) x^(n−1) = (1/(1−x))   ⇒  S(x) = −ln/1−x/ +k  k=S(0)=0⇒  S(x)=−ln/1−x/  so S= S((1/2))  =ln(2)
letputS=n=11n2nS(x)=n=1xnnduetouniformconvergenceofthatserie/x/<1andforhidderivativewehaveS,(x)=n1xn1=11xS(x)=ln/1x/+kk=S(0)=0S(x)=ln/1x/soS=S(12)=ln(2)
Answered by prakash jain last updated on 25/Dec/17
ln (1−x)=−x−(x^2 /2)−(x^3 /3)−...  put x=(1/2)  ln (1−(1/2))=−Σ_(n=1) ^∞ (1/(n∙2^n ))  ln 1−ln 2=−Σ_(n=1) ^∞ (1/(n∙2^n ))  ln 2=Σ_(n=1) ^∞ (1/(n∙2^n ))  ans: ln 2
ln(1x)=xx22x33putx=12ln(112)=n=11n2nln1ln2=n=11n2nln2=n=11n2nans:ln2

Leave a Reply

Your email address will not be published. Required fields are marked *