Question Number 90570 by Tony Lin last updated on 24/Apr/20
$${find}\:{the}\:{sum}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} } \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
$${S}\:=\sqrt{\mathrm{3}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}{n}+\mathrm{1}} \:\:=\sqrt{\mathrm{3}}{f}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right){with} \\ $$$${f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} −{x}\:\:\:\:\:\left(\mid{x}\mid<\mathrm{1}\right) \\ $$$${we}\:{have}\:{f}^{'} \left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} −\mathrm{1}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{2}} \right)^{{n}} −\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\:\Rightarrow \\ $$$${f}\left({x}\right)=\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:−{x}\:+{c}\:\:={arctan}\left({x}\right)−{x}\:+{c} \\ $$$${f}\left(\mathrm{0}\right)\:=\mathrm{0}={c}\:\Rightarrow{f}\left({x}\right)\:={arctan}\left({x}\right)−{x}\:\Rightarrow \\ $$$${S}\:=\sqrt{\mathrm{3}}\left\{\:{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right\}\:=\sqrt{\mathrm{3}}{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:−\mathrm{1} \\ $$$${S}=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{6}}−\mathrm{1} \\ $$
Answered by mr W last updated on 24/Apr/20
$$\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +…=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−{x}\right)^{{n}} =\frac{\mathrm{1}}{\mathrm{1}+{x}}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$${replace}\:{x}\:{with}\:{x}^{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} =\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{{x}} {x}^{\mathrm{2}{n}} {dx}\right]=\int_{\mathrm{0}} ^{{x}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\right]=\mathrm{tan}^{−\mathrm{1}} {x} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}\right]=\frac{\mathrm{tan}^{−\mathrm{1}} {x}}{{x}} \\ $$$${replace}\:{x}\:{with}\:\sqrt{{x}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\right]=\frac{\mathrm{tan}^{−\mathrm{1}} \sqrt{{x}}}{\:\sqrt{{x}}} \\ $$$${replace}\:{x}\:{with}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} }=\sqrt{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} }=\sqrt{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\mathrm{1} \\ $$
Commented by Tony Lin last updated on 25/Apr/20
$${thank}\:{you}\:{both} \\ $$