Menu Close

find-the-sum-of-n-1-1-n-2n-1-3-n-




Question Number 90570 by Tony Lin last updated on 24/Apr/20
find the sum of Σ_(n=1) ^∞ (((−1)^n )/((2n+1)3^n ))
findthesumofn=1(1)n(2n+1)3n
Commented by mathmax by abdo last updated on 24/Apr/20
S =(√3)Σ_(n=1) ^∞  (1/(2n+1))(−1)^n ((1/( (√3))))^(2n+1)   =(√3)f((1/( (√3))))with  f(x)=Σ_(n=1) ^∞ (((−1)^n )/(2n+1))x^(2n+1)  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))x^(2n+1) −x     (∣x∣<1)  we have f^′ (x) =Σ_(n=0) ^∞ (−1)^n x^(2n) −1 =Σ_(n=0) ^∞ (−x^2 )^n −1 =(1/(1+x^2 ))−1 ⇒  f(x)=∫ (dx/(1+x^2 )) −x +c  =arctan(x)−x +c  f(0) =0=c ⇒f(x) =arctan(x)−x ⇒  S =(√3){ arctan((1/( (√3))))−(1/( (√3)))} =(√3)arctan((1/( (√3)))) −1  S=((π(√3))/6)−1
S=3n=112n+1(1)n(13)2n+1=3f(13)withf(x)=n=1(1)n2n+1x2n+1=n=0(1)n2n+1x2n+1x(x∣<1)wehavef(x)=n=0(1)nx2n1=n=0(x2)n1=11+x21f(x)=dx1+x2x+c=arctan(x)x+cf(0)=0=cf(x)=arctan(x)xS=3{arctan(13)13}=3arctan(13)1S=π361
Answered by mr W last updated on 24/Apr/20
1−x+x^2 −x^3 +...=Σ_(n=0) ^∞ (−x)^n =(1/(1+x)) for ∣x∣<1  replace x with x^2   Σ_(n=0) ^∞ (−1)^n x^(2n) =(1/(1+x^2 ))  Σ_(n=0) ^∞ [(−1)^n ∫_0 ^x x^(2n) dx]=∫_0 ^x (dx/(1+x^2 ))  Σ_(n=0) ^∞ [(−1)^n (x^(2n+1) /(2n+1))]=tan^(−1) x  Σ_(n=0) ^∞ [(−1)^n (x^(2n) /(2n+1))]=((tan^(−1) x)/x)  replace x with (√x)  Σ_(n=0) ^∞ [(−1)^n (x^n /(2n+1))]=((tan^(−1) (√x))/( (√x)))  replace x with (1/3)  Σ_(n=0) ^∞ (((−1)^n )/((2n+1)3^n ))=(√3) tan^(−1) (1/( (√3)))  ⇒Σ_(n=1) ^∞ (((−1)^n )/((2n+1)3^n ))=(√3) tan^(−1) (1/( (√3)))−1
1x+x2x3+=n=0(x)n=11+xforx∣<1replacexwithx2n=0(1)nx2n=11+x2n=0[(1)n0xx2ndx]=0xdx1+x2n=0[(1)nx2n+12n+1]=tan1xn=0[(1)nx2n2n+1]=tan1xxreplacexwithxn=0[(1)nxn2n+1]=tan1xxreplacexwith13n=0(1)n(2n+1)3n=3tan113n=1(1)n(2n+1)3n=3tan1131
Commented by Tony Lin last updated on 25/Apr/20
thank you both
thankyouboth

Leave a Reply

Your email address will not be published. Required fields are marked *