Menu Close

Find-the-sum-of-n-terms-of-the-series-S-n-1-22-333-4444-




Question Number 121235 by ZiYangLee last updated on 06/Nov/20
Find the sum of n terms of the series  S_n =1+22+333+4444+……
FindthesumofntermsoftheseriesSn=1+22+333+4444+
Answered by Ar Brandon last updated on 06/Nov/20
S_n =1+22+333+4444+∙∙∙       =1(10^0 )+2(10^1 +10^0 )+3(10^2 +10^1 +10^0 )          +4(10^3 +10^2 +10^1 +10^0 )       =10^0 (1+2+3+∙∙∙+n)+10^1 (2+3+4+∙∙∙+n)          +10^2 (3+4+5+∙∙∙+n)+∙∙∙+10^(n−1) (n)       =((n(n+1))/2)+((10(n−1)(2+n))/2)+((10^2 (n−2)(3+n))/2)+∙∙∙+((10^(n−1) (n))/1)    To be continued...
Sn=1+22+333+4444+=1(100)+2(101+100)+3(102+101+100)+4(103+102+101+100)=100(1+2+3++n)+101(2+3+4++n)+102(3+4+5++n)++10n1(n)=n(n+1)2+10(n1)(2+n)2+102(n2)(3+n)2++10n1(n)1Tobecontinued
Answered by Dwaipayan Shikari last updated on 06/Nov/20
First term =((10^n n)/9)−(n/9)        n=1  second term=((10^2 .2)/9)−(2/9)  third term=((10^3 .3)/9)−(3/9)  T_n =((10^n .n)/9)−(n/9)  Σ_(n=1) ^n T_n =Σ_(n=1) ^n ((10^n .n)/9)−Σ_(n=1) ^n (n/9)        S=Σ^n n.10^n            S=10+2.10^2 +...+n10^n   −10S=       −10^2 −....−(n−1)10^n −n10^(n+1)   −9S=10+10^2 +...+10^n −n10^(n+1)   S=(n/9)10^(n+1) −(1/(81))(10^(n+1) −10)  Σ^n T_n =(1/9)((n/9)10^(n+1) −(1/(81))10^(n+1) +((10)/(81)))−Σ^n (n/9)           =(1/9)((n/9)10^(n+1) −(1/(81))10^(n+1) +((10)/(81)))−((n(n+1))/(18))
Firstterm=10nn9n9n=1secondterm=102.2929thirdterm=103.3939Tn=10n.n9n9nn=1Tn=nn=110n.n9nn=1n9S=nn.10nS=10+2.102++n10n10S=102.(n1)10nn10n+19S=10+102++10nn10n+1S=n910n+1181(10n+110)nTn=19(n910n+118110n+1+1081)nn9=19(n910n+118110n+1+1081)n(n+1)18
Commented by Dwaipayan Shikari last updated on 06/Nov/20
Checking  n=1  (1/9)(((100)/9)−((100)/(81))+((10)/(81)))−(2/(18))=((10)/9)−(1/9)=1  (true)
Checkingn=119(100910081+1081)218=10919=1(true)

Leave a Reply

Your email address will not be published. Required fields are marked *