Menu Close

Find-the-sum-of-the-all-positive-integers-of-all-positive-factorsof-12-




Question Number 124332 by ZiYangLee last updated on 02/Dec/20
Find the sum of the all positive integers  of all positive factorsof 12
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{of}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{factorsof}\:\mathrm{12} \\ $$
Answered by mr W last updated on 02/Dec/20
12=2^2 ×3  number of factors=(2+1)(1+1)=6  factors: 1,2,3,4,6,12  sum=1+2+3+4+6+12=28  or using formula  sum=((2^(2+1) −1)/(2−1))×((3^(1+1) −1)/(3−1))=7×4=28
$$\mathrm{12}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3} \\ $$$${number}\:{of}\:{factors}=\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)=\mathrm{6} \\ $$$${factors}:\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{12} \\ $$$${sum}=\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{6}+\mathrm{12}=\mathrm{28} \\ $$$${or}\:{using}\:{formula} \\ $$$${sum}=\frac{\mathrm{2}^{\mathrm{2}+\mathrm{1}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}}×\frac{\mathrm{3}^{\mathrm{1}+\mathrm{1}} −\mathrm{1}}{\mathrm{3}−\mathrm{1}}=\mathrm{7}×\mathrm{4}=\mathrm{28} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *