Menu Close

Find-the-sum-of-the-coefficients-of-all-the-integral-power-of-x-in-the-expansion-of-1-2-x-40-




Question Number 32239 by rahul 19 last updated on 22/Mar/18
Find the sum of the coefficients  of all the integral power of x in the  expansion of (1+2(√x))^(40) .
Findthesumofthecoefficientsofalltheintegralpowerofxintheexpansionof(1+2x)40.
Answered by MJS last updated on 22/Mar/18
(1+2(√x))^2 =4x+1+...  (1+2(√x))^4 =16x^2 +24x+1+...  (1+2(√x))^6 =64x^3 +240x^2 +60x+1+...  {4;1}={1×2^2 ;1×2^0 }  {16;24;1}={1×2^4 ;6×2^2 ;1×2^0 }  {64;240;60;1}=  ={1×2^6 ;15×2^4 ;15×2^2 ;1×2^0 }    we see:  { ((n),(0) )×2^n ; ((n),(2) )×2^(n−2) ; ((n),(4) )×2^(n−4) ;...}  the sum of this list is  S=Σ_(k=0) ^(n/2)  ((n),((2k)) )×2^(n−2k) ; with 2∣n  n=40  ⇒ S=6 078 832 729 528 464 401
(1+2x)2=4x+1+(1+2x)4=16x2+24x+1+(1+2x)6=64x3+240x2+60x+1+{4;1}={1×22;1×20}{16;24;1}={1×24;6×22;1×20}{64;240;60;1}=={1×26;15×24;15×22;1×20}wesee:{(n0)×2n;(n2)×2n2;(n4)×2n4;}thesumofthislistisS=n2k=0(n2k)×2n2k;with2nn=40S=6078832729528464401

Leave a Reply

Your email address will not be published. Required fields are marked *