Menu Close

Find-the-sum-of-the-cubes-of-first-n-even-number-and-first-n-odd-number-




Question Number 57635 by Tawa1 last updated on 09/Apr/19
Find the sum of the cubes of first n even number,  and  first n odd number.
Findthesumofthecubesoffirstnevennumber,andfirstnoddnumber.
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
As per higher algebra Bernard and child  we can find   s_r =1^r +2^r +3^r +...+n^r   by intregation snd intregation constant  as Bernuli numbers  example  s_1 =1+2+3+...+n  =((n(n+1))/2)=(n^2 /2)+(n/2)  now to find S_2 =1^2 +2^2 +3^2 +...+n^2   using S_1   S_r =r∫S_(r−1) dn+nB_r ←formula  S_2 =2∫((n^2 /2)+(n/2))+n×(1/6) [B_2 =(1/6)]  =2((n^3 /6)+(n^2 /4))+n×(1/6)  =(n^3 /3)+(n^2 /2)+(n/6)  =((2n^3 +3n^2 +n)/6)  =(n/6)×(2n^2 +2n+n+1)  =(n/6)×{2n(n+1)+1(n+1)}  =((n(n+1)(2n+1))/6)  similarly  S_3 =3∫S_2 dn+nB_3   =3∫((n^3 /3)+(n^2 /2)+(n/6))dn+n×0  =(n^4 /4)+(n^3 /2)+(n^2 /4)  =((n^4 +2n^3 +n^2 )/4)  =((n^2 (n^2 +2n+1))/4)  ={((n(n+1))/2)}^2   thus you can find...
AsperhigheralgebraBernardandchildwecanfindsr=1r+2r+3r++nrbyintregationsndintregationconstantasBernulinumbersexamples1=1+2+3++n=n(n+1)2=n22+n2nowtofindS2=12+22+32++n2usingS1Sr=rSr1dn+nBrformulaS2=2(n22+n2)+n×16[B2=16]=2(n36+n24)+n×16=n33+n22+n6=2n3+3n2+n6=n6×(2n2+2n+n+1)=n6×{2n(n+1)+1(n+1)}=n(n+1)(2n+1)6similarlyS3=3S2dn+nB3=3(n33+n22+n6)dn+n×0=n44+n32+n24=n4+2n3+n24=n2(n2+2n+1)4={n(n+1)2}2thusyoucanfind
Commented by Tawa1 last updated on 09/Apr/19
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.
Answered by mr W last updated on 09/Apr/19
S_E =Σ_(k=1) ^n (2k)^3 =8Σ_(k=1) ^n k^3 =8×((n^2 (n+1)^2 )/4)  =2n^2 (n+1)^2     S_O =Σ_(k=1) ^n (2k−1)^3 =Σ_(k=1) ^n (8k^3 −12k^2 +6k−1)=8×((n^2 (n+1)^2 )/4)−12×((n(n+1)(2n+1))/6)+6×((n(n+1))/2)−n  =n^2 (2n^2 −1)
SE=nk=1(2k)3=8nk=1k3=8×n2(n+1)24=2n2(n+1)2SO=nk=1(2k1)3=nk=1(8k312k2+6k1)=8×n2(n+1)2412×n(n+1)(2n+1)6+6×n(n+1)2n=n2(2n21)
Commented by Tawa1 last updated on 09/Apr/19
Wow, God bless you sir.  I appreciate.
Wow,Godblessyousir.Iappreciate.
Commented by Tawa1 last updated on 09/Apr/19
But sir, i have a question.      Please see this question.                simplify:     (((√(10 + (√1)))  +  (√(10 + (√2)))  + ... + (√(10 + (√(99)))))/( (√(10 − (√1)))  + (√(10 − (√2)))  + ... + (√(10 − (√(99))))))  Answer:    (√2)  +  1
Butsir,ihaveaquestion.Pleaseseethisquestion.simplify:10+1+10+2++10+99101+102++1099Answer:2+1
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
excellent sir...
excellentsir
Commented by Tawa1 last updated on 09/Apr/19
God bless you sir. But i have checked.  i usually undersand your  solution better sir.
Godblessyousir.Butihavechecked.iusuallyundersandyoursolutionbettersir.
Commented by mr W last updated on 09/Apr/19
i like this solution:  A=Σ_(k=1) ^(99) (√(10+(√k)))  B=Σ_(k=1) ^(99) (√(10−(√k)))  ((√(10+(√k)))−(√(10−(√k))))^2 =10+(√k)−2(√((10+(√k))(10−(√k))))+10−(√k)  ((√(10+(√k)))−(√(10−(√k))))^2 =2(10−(√(100−k)))  ⇒(√(10+(√k)))−(√(10−(√k)))=(√2)(√(10−(√(100−k))))  ⇒Σ_(k=1) ^(99) (√(10+(√k)))−Σ_(k=1) ^(99) (√(10−(√k)))=(√2)Σ_(k=99) ^1 (√(10−(√(100−k))))  ⇒A−B=(√2)B  ⇒A=((√2)+1)B  ⇒(A/B)=(√2)+1
ilikethissolution:A=99k=110+kB=99k=110k(10+k10k)2=10+k2(10+k)(10k)+10k(10+k10k)2=2(10100k)10+k10k=210100k99k=110+k99k=110k=21k=9910100kAB=2BA=(2+1)BAB=2+1
Commented by Tawa1 last updated on 09/Apr/19
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.
Commented by Tawa1 last updated on 09/Apr/19
Sir,  you said  B  =  Σ_(k = 1) ^(99)  (√(10 − (√k)))  finally how is      Σ_(k = 99) ^1 (√(10 − (√(100 − k))))    =  B    again ...
Sir,yousaidB=99k=110kfinallyhowis1k=9910100k=Bagain
Commented by mr W last updated on 09/Apr/19
generally:  ((Σ_(k=m) ^(n^2 −m) (√(n+(√k))))/(Σ_(k=m) ^(n^2 −m) (√(n−(√k)))))=(√2)+1 with n,m∈N
generally:n2mk=mn+kn2mk=mnk=2+1withn,mN
Commented by Tawa1 last updated on 09/Apr/19
wow. I understand now. God bless you.
wow.Iunderstandnow.Godblessyou.
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
look...B(when k →1→99)=Σ_(k=1) ^(99) (√(10−(√k) ))  B(k→1→99=(√(10−(√1))) +(√(10−(√2))) +(√(10−(√3))) +..+(√(10−(√(99))))   now look  B(k→99→1)[Σ_(k=99) ^1 (√(10−(√(100−k)))) ]  =(√(10−(√1))) +(√(10−(√2))) +...+(√(10−(√(99))))   hence  Σ_(k=1) ^(99) (√(10−(√k)))  =Σ_(k=99) ^1 (√(10−(√(100−k))))
lookB(whenk199)=99k=110kB(k199=101+102+103+..+1099nowlookB(k991)[1k=9910100k]=101+102++1099hence99k=110k=1k=9910100k
Commented by Meritguide1234 last updated on 10/Apr/19
see q.54226(ans already provided)
seeq.54226(ansalreadyprovided)
Commented by malwaan last updated on 10/Apr/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *