Menu Close

find-the-sum-of-the-infinite-series-tan-1-2-n-2-




Question Number 30235 by NECx last updated on 18/Feb/18
find the sum of the infinite  series        tan^(−1) ((2/n^2 ))
$${find}\:{the}\:{sum}\:{of}\:{the}\:{infinite} \\ $$$${series}\: \\ $$$$\:\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right) \\ $$
Commented by prof Abdo imad last updated on 18/Feb/18
for n≥1   (2/n^2 )= ((n+1−(n−1))/(1+(n+1)(n−1))) let put n=tanu_n   (2/n^2 )= ((tanu_(n+1) −tan_(n−1) )/(1+tanu_n tanu_(n−1) ))=tan(u_(n+1) −u_(n−1) )  arctan((2/n^2 ))= u_(n+1)  −u_(n−1 )  and  S_N =Σ_(n=1) ^N arctan((2/n^2 ))=Σ_(n=1) ^N ((u_(n+1) −u_n ) +(u_n −u_(n−1) ))  =Σ_(n=1) ^N (u_(n+1)  −u_n ) +Σ_(n=1) ^N (u_n  −u_(n−1) )  =u_(N+1)  −u_1   +u_N  −u_(0 ) =arctan(N+1)+arctanN −(π/4)  lim_(N→∞)  S_N = (π/2) +(π/2) −(π/4)= ((3π)/4) .
$${for}\:{n}\geqslant\mathrm{1}\:\:\:\frac{\mathrm{2}}{{n}^{\mathrm{2}} }=\:\frac{{n}+\mathrm{1}−\left({n}−\mathrm{1}\right)}{\mathrm{1}+\left({n}+\mathrm{1}\right)\left({n}−\mathrm{1}\right)}\:{let}\:{put}\:{n}={tanu}_{{n}} \\ $$$$\frac{\mathrm{2}}{{n}^{\mathrm{2}} }=\:\frac{{tanu}_{{n}+\mathrm{1}} −{tan}_{{n}−\mathrm{1}} }{\mathrm{1}+{tanu}_{{n}} {tanu}_{{n}−\mathrm{1}} }={tan}\left({u}_{{n}+\mathrm{1}} −{u}_{{n}−\mathrm{1}} \right) \\ $$$${arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)=\:{u}_{{n}+\mathrm{1}} \:−{u}_{{n}−\mathrm{1}\:} \:{and} \\ $$$${S}_{{N}} =\sum_{{n}=\mathrm{1}} ^{{N}} {arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{1}} ^{{N}} \left(\left({u}_{{n}+\mathrm{1}} −{u}_{{n}} \right)\:+\left({u}_{{n}} −{u}_{{n}−\mathrm{1}} \right)\right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{{N}} \left({u}_{{n}+\mathrm{1}} \:−{u}_{{n}} \right)\:+\sum_{{n}=\mathrm{1}} ^{{N}} \left({u}_{{n}} \:−{u}_{{n}−\mathrm{1}} \right) \\ $$$$={u}_{{N}+\mathrm{1}} \:−{u}_{\mathrm{1}} \:\:+{u}_{{N}} \:−{u}_{\mathrm{0}\:} ={arctan}\left({N}+\mathrm{1}\right)+{arctanN}\:−\frac{\pi}{\mathrm{4}} \\ $$$${lim}_{{N}\rightarrow\infty} \:{S}_{{N}} =\:\frac{\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}=\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:. \\ $$
Commented by abdo imad last updated on 18/Feb/18
arctan means tan^(−1) .
$${arctan}\:{means}\:{tan}^{−\mathrm{1}} . \\ $$
Commented by NECx last updated on 19/Feb/18
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *