Menu Close

Find-the-sum-of-the-nth-term-1-6-2-6-3-6-4-6-n-6-




Question Number 13102 by tawa tawa last updated on 14/May/17
Find the sum of the nth term  :  1^6  + 2^6  + 3^6  + 4^6  + ... + n^6
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\::\:\:\mathrm{1}^{\mathrm{6}} \:+\:\mathrm{2}^{\mathrm{6}} \:+\:\mathrm{3}^{\mathrm{6}} \:+\:\mathrm{4}^{\mathrm{6}} \:+\:…\:+\:\mathrm{n}^{\mathrm{6}} \\ $$
Commented by tawa tawa last updated on 14/May/17
please help with this ..
$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}\:..\: \\ $$
Commented by mrW1 last updated on 14/May/17
please read “Faulhaber′s formula”  in Wikipedia for calculating the sum  of the p−th powers of the first n  positive integers: Σ_(k=1) ^n k^p .
$${please}\:{read}\:“{Faulhaber}'{s}\:{formula}'' \\ $$$${in}\:{Wikipedia}\:{for}\:{calculating}\:{the}\:{sum} \\ $$$${of}\:{the}\:{p}−{th}\:{powers}\:{of}\:{the}\:{first}\:{n} \\ $$$${positive}\:{integers}:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{{p}} . \\ $$
Commented by mrW1 last updated on 14/May/17
Commented by tawa tawa last updated on 14/May/17
God bless you sir. i really appreciate.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *