Menu Close

Find-the-sum-of-the-series-1-1-2-1-3-1-4-1-6-1-8-1-9-1-12-where-the-terms-are-the-reciprocals-of-the-positive-integers-whose-only-prime-factors-are-2s-and-3s-




Question Number 86762 by Tony Lin last updated on 31/Mar/20
Find the sum of the series  1+(1/2)+(1/3)+(1/4)+(1/6)+(1/8)+(1/9)+(1/(12))+∙∙∙  where the terms are the reciprocals  of the positive integers whose only   prime factors are 2s and 3s
$${Find}\:{the}\:{sum}\:{of}\:{the}\:{series} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{12}}+\centerdot\centerdot\centerdot \\ $$$${where}\:{the}\:{terms}\:{are}\:{the}\:{reciprocals} \\ $$$${of}\:{the}\:{positive}\:{integers}\:{whose}\:{only}\: \\ $$$${prime}\:{factors}\:{are}\:\mathrm{2}{s}\:{and}\:\mathrm{3}{s} \\ $$
Commented by Prithwish Sen 1 last updated on 31/Mar/20
(1+(1/2)+(1/2^2 ) +.......)(1+(1/3)+(1/3^2 )+.....)  =(1/(1−(1/2))) x (1/(1−(1/(3 )))) = 3 please check.
$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+…….\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…..\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\:\mathrm{x}\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}\:}}\:=\:\mathrm{3}\:\mathrm{please}\:\mathrm{check}. \\ $$
Commented by redmiiuser last updated on 31/Mar/20
3
$$\mathrm{3} \\ $$$$ \\ $$
Commented by Tony Lin last updated on 31/Mar/20
(1/(1−(1/2)))×(1/(1−(1/3)))=2×(3/2)=3
$$\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}=\mathrm{2}×\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{3} \\ $$
Commented by Prithwish Sen 1 last updated on 31/Mar/20
sorry i fix it .
$$\mathrm{sorry}\:\mathrm{i}\:\mathrm{fix}\:\mathrm{it}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *