Question Number 182073 by Acem last updated on 04/Dec/22
$${Find}\:{the}\:{sum}\:{of}\:{the}\:{solutions}\:{of}\:{the}\:{equation}: \\ $$$$\:\mid\sqrt{{x}}\:−\:\mathrm{2}\mid+\:\sqrt{{x}}\:\left(\sqrt{{x}}\:−\:\mathrm{4}\right)+\:\mathrm{2}=\:\mathrm{0}\:\:\:;\:{x}>\:\mathrm{0} \\ $$
Answered by HeferH last updated on 04/Dec/22
$$\:\mid\sqrt{{x}}\:−\:\mathrm{2}\mid\:=\:\mathrm{4}\sqrt{{x}}\:−\:{x}\:−\:\mathrm{2} \\ $$$$\:\:\sqrt{{x}}\:−\:\mathrm{2}\:=\:\pm\:\left(\mathrm{4}\sqrt{{x}}\:−\:{x}\:−\:\mathrm{2}\right) \\ $$$$\:{First}\:{eq}. \\ $$$$\:\:\sqrt{{x}}−\:\mathrm{2}\:=\:−\left(\mathrm{4}\sqrt{{x}}\:−\:{x}\:−\:\mathrm{2}\right) \\ $$$$\:\sqrt{{x}}\:−\:\mathrm{2}\:=\:{x}\:+\:\mathrm{2}\:−\mathrm{4}\sqrt{{x}} \\ $$$$\:\mathrm{5}\sqrt{{x}}\:=\:{x}\:+\:\mathrm{4} \\ $$$$\:\mathrm{25}{x}\:=\:{x}^{\mathrm{2}} \:+\:\mathrm{16}\:+\:\mathrm{8}{x} \\ $$$$\:{x}^{\mathrm{2}} \:−\:\mathrm{17}{x}\:+\:\mathrm{16}\:=\:\mathrm{0} \\ $$$$\:\left({x}\:−\:\mathrm{16}\right)\left({x}\:−\:\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\:{x}_{\mathrm{1}} \:=\:\mathrm{16};\:{x}_{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\:{Second}\:{eq}. \\ $$$$\:\sqrt{{x}}\:−\:\mathrm{2}\:=\:\mathrm{4}\sqrt{{x}}\:−\:{x}\:−\:\mathrm{2} \\ $$$$\:{x}\:=\:\mathrm{3}\sqrt{{x}} \\ $$$$\:{x}_{\mathrm{3}} \:=\:\mathrm{9}\: \\ $$$$\:{x}\:\in\:\left\{\mathrm{1},\:\mathrm{9}\right\}\:\:\Rightarrow\:{sum}\:=\:\mathrm{10} \\ $$
Commented by manxsol last updated on 04/Dec/22
$${analisis}\:{inicial} \\ $$$$\sqrt{{x}}−\mathrm{4}\langle\mathrm{0}\Rightarrow\mathrm{0}\langle\sqrt{{x}}\langle\mathrm{4}\Rightarrow\mathrm{0}\langle{x}\langle\mathrm{16} \\ $$$${two}\:{parts} \\ $$$$\mathrm{0}\langle\sqrt{{x}}\langle\mathrm{2}\:\:\:\:\:\mathrm{2}\ll\sqrt{{x}}\langle\mathrm{4} \\ $$$$−\mathrm{2}\langle\sqrt{{x}}−\mathrm{2}\langle\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}\ll\sqrt{{x}}−\mathrm{2}\langle\mathrm{4}\:\:\:\:\: \\ $$