find-the-sum-of-z-sinx-sin2x-sin3x-sinnx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 171455 by mokys last updated on 15/Jun/22 findthesumofz=sinx+sin2x+sin3x+……+sinnx Commented by mr W last updated on 15/Jun/22 z=cosx2−cos(n+12)x2sinx2 Answered by mr W last updated on 16/Jun/22 letA=∑nk=1coskxletB=∑nk=1sinkxA+iB=∑nk=1(coskx+isinkx)A+iB=∑nk=1eikx=ei(n+1)x−1eix−1A+iB=cos(n+1)x−1+isin(n+1)xcosx−1+isinxA+iB=[cos(n+1)x−1+isin(n+1)x](cosx−1−isinx)(cosx−1+isinx)(cosx−1−isinx)A+iB=[cos(n+1)x−1](cosx−1)+sin(n+1)xsinx+i{sin(n+1)x(cosx−1)−[cos(n+1)x−1]sinx}4sin2x2⇒A=[cos(n+1)x−1](cosx−1)+sin(n+1)xsinx4sin2x2⇒A=sin(n+12)x−sinx22sinx2B=sin(n+1)x(cosx−1)−[cos(n+1)x−1]sinx4sin2x2⇒B=cosx2−cos(n+12)x2sinx2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-dy-dx-x-y-x-y-Next Next post: Question-171456 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.