Menu Close

find-the-sum-of-z-sinx-sin2x-sin3x-sinnx-




Question Number 171455 by mokys last updated on 15/Jun/22
find the sum of z = sinx + sin2x+sin3x+......+sinnx
findthesumofz=sinx+sin2x+sin3x++sinnx
Commented by mr W last updated on 15/Jun/22
z=((cos (x/2)−cos (n+(1/2))x)/( 2 sin (x/2)))
z=cosx2cos(n+12)x2sinx2
Answered by mr W last updated on 16/Jun/22
let A=Σ_(k=1) ^n cos kx  let B=Σ_(k=1) ^n sin kx  A+iB=Σ_(k=1) ^n (cos kx+i sin kx)  A+iB=Σ_(k=1) ^n e^(ikx) =((e^(i(n+1)x) −1)/(e^(ix) −1))  A+iB=((cos (n+1)x−1+i sin (n+1)x)/(cos x−1+i sin x))  A+iB=(([cos (n+1)x−1+i sin (n+1)x](cos x−1−i sin x))/((cos x−1+i sin x)(cos x−1−i sin x)))  A+iB=(([cos (n+1)x−1](cos x−1)+sin (n+1)x sin x+i{sin (n+1)x (cos x−1)−[cos (n+1)x−1]sin x})/( 4 sin^2  (x/2)))  ⇒A=(([cos (n+1)x−1](cos x−1)+sin (n+1)x sin x)/( 4 sin^2  (x/2)))  ⇒A=((sin (n+(1/2))x−sin (x/2))/( 2 sin (x/2)))  B=((sin (n+1)x (cos x−1)−[cos (n+1)x−1]sin x)/( 4 sin^2  (x/2)))  ⇒B=((cos (x/2)−cos (n+(1/2))x)/( 2 sin (x/2)))
letA=nk=1coskxletB=nk=1sinkxA+iB=nk=1(coskx+isinkx)A+iB=nk=1eikx=ei(n+1)x1eix1A+iB=cos(n+1)x1+isin(n+1)xcosx1+isinxA+iB=[cos(n+1)x1+isin(n+1)x](cosx1isinx)(cosx1+isinx)(cosx1isinx)A+iB=[cos(n+1)x1](cosx1)+sin(n+1)xsinx+i{sin(n+1)x(cosx1)[cos(n+1)x1]sinx}4sin2x2A=[cos(n+1)x1](cosx1)+sin(n+1)xsinx4sin2x2A=sin(n+12)xsinx22sinx2B=sin(n+1)x(cosx1)[cos(n+1)x1]sinx4sin2x2B=cosx2cos(n+12)x2sinx2

Leave a Reply

Your email address will not be published. Required fields are marked *