Menu Close

Find-the-sum-to-infinity-whose-n-th-term-is-n-2-n-1-




Question Number 46860 by 786786AM last updated on 01/Nov/18
 Find the sum to infinity whose n^(th)  term is (n/2^(n−1) ) .
Findthesumtoinfinitywhosenthtermisn2n1.
Commented by maxmathsup by imad last updated on 01/Nov/18
let s(x)=Σ_(n=1) ^∞  nx^(n−1)   with ∣x∣<1  we have Σ_(n=1) ^∞  (n/2^(n−1) ) =s((1/2)) but  Σ_(n=0) ^∞  x^n  = (1/(1−x)) ⇒ Σ_(n=1) ^∞ nx^(n−1)  =(1/((1−x)^2 )) ⇒ s(x)=(1/((1−x)^2 )) ⇒  s((1/2)) = (1/((1−(1/2))^2 )) =4 ⇒ Σ_(n=1) ^∞  nx^(n−1)  =4 .
lets(x)=n=1nxn1withx∣<1wehaven=1n2n1=s(12)butn=0xn=11xn=1nxn1=1(1x)2s(x)=1(1x)2s(12)=1(112)2=4n=1nxn1=4.
Commented by maxmathsup by imad last updated on 02/Nov/18
anther method  let  S_n (x)=Σ_(k=1) ^n  k x^(k−1)   with ∣x∣<1 we have  S_∞ ((1/2))=Σ_(k=1) ^∞  k x^(k−1)   let determine S_n (x) we have  Σ_(k=0) ^n  x^k  =((x^(n+1) −1)/(x−1)) ⇒ Σ_(k=1) ^n  k x^(k−1)  =((nx^(n+1) −(n+1)x^n +1)/((1−x)^2 ))=S_n (x) ⇒  S_n ((1/2)) = 4{(n/2^(n+1) ) −((n+1)/2^n ) +1} →4 (n→+∞) ⇒ S_(∞ )  ((1/2))=4 =Σ_(n=1) ^∞  (n/2^(n−1) )
anthermethodletSn(x)=k=1nkxk1withx∣<1wehaveS(12)=k=1kxk1letdetermineSn(x)wehavek=0nxk=xn+11x1k=1nkxk1=nxn+1(n+1)xn+1(1x)2=Sn(x)Sn(12)=4{n2n+1n+12n+1}4(n+)S(12)=4=n=1n2n1
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
S_n =(1/2^0 )+(2/2^1 )+(3/2^2 )+(4/2^3 )+...+(n/2^(n−1) )  (S_n /2)=       +(1/2^1 )+(2/2^2 )+(3/2^3 )+...+((n−1)/2^(n−1) )+(n/2^n )  S_n −(S_n /2)=((1/2^0 )+(1/2^1 )+(1/2^2 )+...+(1/2^(n−1) ))−(n/2^n )  (S_n /2)=(((1/2^0 )(1−(1/2^n )))/(1−(1/2)))−(n/2^n )  S_n = 2×(((1−(1/2^n )))/(1/2))−(n/2^n )  when n→∞  S_∞  =4
Sn=120+221+322+423++n2n1Sn2=+121+222+323++n12n1+n2nSnSn2=(120+121+122++12n1)n2nSn2=120(112n)112n2nSn=2×(112n)12n2nwhennS=4

Leave a Reply

Your email address will not be published. Required fields are marked *