Menu Close

Find-the-sum-to-n-terms-of-1-1-2-3-3-2-3-4-5-3-4-5-




Question Number 44918 by Tawa1 last updated on 06/Oct/18
Find the sum to n terms of:    (1/(1.2.3)) + (3/(2.3.4)) + (5/(3.4.5)) + ...
Findthesumtontermsof:11.2.3+32.3.4+53.4.5+
Commented by maxmathsup by imad last updated on 06/Oct/18
let  S = Σ_(n=1) ^∞   ((2n−1)/(n(n+1)(n+2)))  we have S =(1/(1.2.3)) +(3/(2.3.4)) +...  S =lim_(n→+∞)   S_n   with  S_n = Σ_(k=1) ^n   ((2k−1)/(k(k+1)(k+2)))  let decompose  F(x) = ((2x−1)/(x(x+1)(x+2)))  F(x)=(a/x) +(b/(x+1)) +(c/(x+2))  a=lim_(x→0) x F(x) = ((−1)/2)  b =lim_(x→−1) (x+1)F(x) = ((−3)/((−1)(1))) =3  c =lim_(x→−2) (x+2)F(x) =((−5)/((−2)(−1))) =−(5/2) ⇒  F(x) =−(1/(2x)) +(3/(x+1)) −(5/(2(x+2))) ⇒ S_n =Σ_(k=1) ^n  F(k)  =−(1/2) Σ_(k=1) ^n  (1/k) +3 Σ_(k=1) ^n  (1/(k+1)) −(5/2) Σ_(k=1) ^n  (1/(k+2))  but   Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1 .  Σ_(k=1) ^n  (1/(k+2)) = Σ_(k=3) ^(n+2)  (1/k) =H_(n+2) −(3/2) ⇒   S_n =−(1/2) H_n   +3H_(n+1) −3 −(5/2)( H_(n+2) −(3/2))  =−(1/2) H_n  +3 H_(n+1)  −(5/2) H_(n+2)  +(3/4)   but  H_n =ln(n) +γ +o((1/n))   ,  H_(n+1) =ln(n+1) +γ +o((1/n)) ,H_(n+2) =ln (n+2)+γ +o((1/n))S  S_n =−(1/2)ln(n)−(γ/2)  +3ln(n+1) +3γ  −(5/2)ln(n+2)−(5/2)γ  +o((1/n))+(3/4) ⇒  S_n =ln(n+1)^2  −ln((√n))−ln(n+2)^(5/2)   +(3/4) +o((1/n))  S_n =ln((((n+1)^2 )/( (√n)(√((n+2)^5 ))))) +(3/4) +o((1/n)) ^ =ln(((n^2  +2n+1)/((n+2)^2 (√(n(n+2)))))) +(3/4) +o((1/n))  but lim_(n→+∞)  ln(((n^2  +2n+1)/((n+2)^2 (√(n^2  +2n)))))=0 ⇒lim_(n→+∞)  S_n =(3/4) ⇒  S =(3/4) .
letS=n=12n1n(n+1)(n+2)wehaveS=11.2.3+32.3.4+S=limn+SnwithSn=k=1n2k1k(k+1)(k+2)letdecomposeF(x)=2x1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=limx0xF(x)=12b=limx1(x+1)F(x)=3(1)(1)=3c=limx2(x+2)F(x)=5(2)(1)=52F(x)=12x+3x+152(x+2)Sn=k=1nF(k)=12k=1n1k+3k=1n1k+152k=1n1k+2butk=1n1k=Hnk=1n1k+1=k=2n+11k=Hn+11.k=1n1k+2=k=3n+21k=Hn+232Sn=12Hn+3Hn+1352(Hn+232)=12Hn+3Hn+152Hn+2+34butHn=ln(n)+γ+o(1n),Hn+1=ln(n+1)+γ+o(1n),Hn+2=ln(n+2)+γ+o(1n)SSn=12ln(n)γ2+3ln(n+1)+3γ52ln(n+2)52γ+o(1n)+34Sn=ln(n+1)2ln(n)ln(n+2)52+34+o(1n)Sn=ln((n+1)2n(n+2)5)+34+o(1n)=ln(n2+2n+1(n+2)2n(n+2))+34+o(1n)butlimn+ln(n2+2n+1(n+2)2n2+2n)=0limn+Sn=34S=34.
Commented by maxmathsup by imad last updated on 06/Oct/18
the sum to n terms is S_n =(3/4) −(1/2)H_n  +3H_(n+1) −(5/2) H_n .
thesumtontermsisSn=3412Hn+3Hn+152Hn.
Commented by Tawa1 last updated on 06/Oct/18
God bless you sir.  I appreciate.  what is H sir
Godblessyousir.Iappreciate.whatisHsir
Commented by maxmathsup by imad last updated on 06/Oct/18
the harmonic serie H_n =Σ_(k=1) ^n  (1/k) .
theharmonicserieHn=k=1n1k.
Commented by Tawa1 last updated on 09/Oct/18
Sir please, how to find the sum of n terms of:   (1/(1.2.3)) + (1/(4.5.6)) + (1/(7.8.9)) + ...  =  ?
Sirplease,howtofindthesumofntermsof:11.2.3+14.5.6+17.8.9+=?
Answered by ajfour last updated on 06/Oct/18
 2S = [((3−1)/(1.2.3))+3(((4−2)/(2.3.4)))+5(((5−3)/(3.4.5)))+..+(2n−1)((((n+2)−n)/(n(n+1)(n+2))))]   = (1/(1.2))−(1/(2.3))+(3/(2.3))−(3/(3.4))+(5/(3.4))−(5/(4.5))+..+((2n−1)/(n(n+1)))−((2n−1)/((n+1)(n+2)))]   = ((1/(1.2))+(3/(2.3))+(5/(3.4))+..+((2n−1)/(n(n+1))))−((1/(2.3))+(3/(3.4))+(5/(4.5))+..+((2n−1)/((n+1)(n+2))))   = [((2−1)/(1.2))+3(((3−2)/(2.3)))+5(((4−3)/(3.4)))+...+((2n−1)/n)−((2n−1)/(n+1))]        −[((3−2)/(2.3))+3(((4−3)/(3.4)))+5(((5−4)/(4.5)))+..+((2n−1)/(n+1))−((2n−1)/(n+2))]   = [(1/1)−(1/2)+(3/2)−(3/3)+(5/3)−(5/4)+..+((2n−1)/n)−((2n−1)/(n+1))]       −[(1/2)−(1/3)+(3/3)−(3/4)+(5/4)−(5/5)+..+((2n−3)/n)−((2n−3)/(n+1))+((2n−1)/(n+1))−((2n−1)/(n+2))]  = (3/2)−(((2−2)/3))+(((2−2)/4))−....−((2n+1)/(n+1))+((2n−1)/(n+2))  ⇒    2S = (3/2)−((2n+1)/(n+1))+((2n−1)/(n+2))     S = (3/4) −((2n+1)/(2(n+1)))+((2n−1)/(2(n+2))) .  _________________________
2S=[311.2.3+3(422.3.4)+5(533.4.5)+..+(2n1)((n+2)nn(n+1)(n+2))]=11.212.3+32.333.4+53.454.5+..+2n1n(n+1)2n1(n+1)(n+2)]=(11.2+32.3+53.4+..+2n1n(n+1))(12.3+33.4+54.5+..+2n1(n+1)(n+2))=[211.2+3(322.3)+5(433.4)++2n1n2n1n+1][322.3+3(433.4)+5(544.5)+..+2n1n+12n1n+2]=[1112+3233+5354+..+2n1n2n1n+1][1213+3334+5455+..+2n3n2n3n+1+2n1n+12n1n+2]=32(223)+(224).2n+1n+1+2n1n+22S=322n+1n+1+2n1n+2S=342n+12(n+1)+2n12(n+2)._________________________
Commented by Tawa1 last updated on 06/Oct/18
God bless you sir.  But the question is find the sum in nth term.  Answer in terms   of n.  Thanks for you help sir.
Godblessyousir.Butthequestionisfindthesuminnthterm.Answerintermsofn.Thanksforyouhelpsir.
Commented by ajfour last updated on 06/Oct/18
Please view again, now its in  terms of n and correct too.  Nice question, thanks for sharing.
Pleaseviewagain,nowitsintermsofnandcorrecttoo.Nicequestion,thanksforsharing.
Commented by Tawa1 last updated on 06/Oct/18
Yes sir. God bless you sir.  i really appreciate ..
Yessir.Godblessyousir.ireallyappreciate..
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Oct/18
T_n =((1+(n−1)2)/(n(n+1)(n+2)))  T_n =((2n−1)/(n(n+1)(n+2)))=(a/n)+(b/(n+1))+(c/(n+2))  2n−1=a(n+1)(n+2)+b(n)(n+2)+c(n)(n+1)  put n=0  2a=−1  a=((−1)/2)  n+1=0  −3=b(−1)(1)   b=3  n+2=0  −5=c(−2)(−1)    c=((−5)/2)  T_n =((−1)/2)((1/n))+3((1/(n+1)))+((−5)/2)((1/(n+2)))  S=((−1)/2)((1/1)+(1/2)+(1/3)+(1/4)+...+(1/n))+          3((1/2)+(1/3)+(1/4)+...+(1/(n+1)))+          ((−5)/2)((1/3)+(1/4)+(1/5)+..+(1/(n+2)))  let k=(1/4)+(1/5)+(1/6)+...+(1/n)  S=((−1)/2)(1+(1/2)+(1/3)+k)+3((1/2)+(1/3)+k+(1/(n+1)))          −(5/2)((1/3)+k+(1/(n+1))+(1/(n+2)))  S=((−1)/2)(((11)/6)+k)+3((5/6)+k+(1/(n+1)))−(5/2)((1/3)+k+(1/(n+1))+(1/(n+2)))  S=((−11)/(12))+(5/2)−(5/6)+k(((−1)/2)+3−(5/2))+(1/(n+1))(3−(5/2))+(1/(n+2))(((−5)/2))  S=((−11+30−10)/(12))+(1/2)((1/(n+1)))−(5/2)((1/(n+2)))  S=(3/4)+(1/2)((1/(n+1)))−(1/2)((1/(n+2)))−(2/(n+2))  S=(3/4)−2((1/(n+2)))+(1/2){((n+2−n−1)/((n+2)(n+1)))}  S=(3/4)−(2/(n+2))+(1/(2(n+1)(n+2)))
Tn=1+(n1)2n(n+1)(n+2)Tn=2n1n(n+1)(n+2)=an+bn+1+cn+22n1=a(n+1)(n+2)+b(n)(n+2)+c(n)(n+1)putn=02a=1a=12n+1=03=b(1)(1)b=3n+2=05=c(2)(1)c=52Tn=12(1n)+3(1n+1)+52(1n+2)S=12(11+12+13+14++1n)+3(12+13+14++1n+1)+52(13+14+15+..+1n+2)letk=14+15+16++1nS=12(1+12+13+k)+3(12+13+k+1n+1)52(13+k+1n+1+1n+2)S=12(116+k)+3(56+k+1n+1)52(13+k+1n+1+1n+2)S=1112+5256+k(12+352)+1n+1(352)+1n+2(52)S=11+301012+12(1n+1)52(1n+2)S=34+12(1n+1)12(1n+2)2n+2S=342(1n+2)+12{n+2n1(n+2)(n+1)}S=342n+2+12(n+1)(n+2)
Commented by Tawa1 last updated on 06/Oct/18
God bless you sir. i appreciate your effort.
Godblessyousir.iappreciateyoureffort.
Commented by Tawa1 last updated on 07/Oct/18
Sir, i tried your method here:    (1/(1.2.3)) + (1/(4.5.6)) + (1/(7.8.9)) + ...  But i don′t get answer.
Sir,itriedyourmethodhere:11.2.3+14.5.6+17.8.9+Butidontgetanswer.

Leave a Reply

Your email address will not be published. Required fields are marked *