Menu Close

Find-the-sum-to-n-terms-of-the-series-1-x-a-1-x-x-2-a-2-1-x-x-2-x-3-a-3-1-x-x-2-x-3-




Question Number 116023 by aye48 last updated on 30/Sep/20
   Find the sum to n terms of the series              1 + (x/a) (1 + x)+ (x^2 /a^2 ) (1 + x + x^2 )+ (x^3 /a^3 ) (1 + x + x^2  + x^3 ) + …
Findthesumtontermsoftheseries1+xa(1+x)+x2a2(1+x+x2)+x3a3(1+x+x2+x3)+
Answered by mindispower last updated on 30/Sep/20
=(1/(x−1))[+((x(x^2 −1))/a)+(x^2 /a^2 )(x^3 −1)+......3  =(1/(x−1))[1+Σ_(k≥1) (x^(2k+1) /a^k )−Σ_(k≥1) (x^k /a^k )]
=1x1[+x(x21)a+x2a2(x31)+3=1x1[1+k1x2k+1akk1xkak]
Answered by Dwaipayan Shikari last updated on 30/Sep/20
S=1+(x/a)(1+x)+(x^2 /a^2 )(1+x+x^2 )+....  +(x^(n−1) /a^(n−1) ).((1−x^n )/(1−x))  −(x/a)S= −(x/a)  −(x^2 /a^2 )(1+x)+.......      −   (x^(n−1) /a^(n−1) ).((1−x^(n−1) )/(1−x))−(x/a).((1−x^n )/(1−x))  (1−(x/a))S=1+(x/a)x+(x^2 /a^2 )x^2 +(x^3 /a^3 ).x^3 +....(x^(n−1) /a^(n−1) ).x^(n−1) −(x/a).((1−x^n )/(1−x))  (1−(x/a))S=((1−((x^2 /a))^n )/(1−(x^2 /a)))−(x/a).((1−x^n )/(1−x))  (1−(x/a))S=(1/a^(n−1) ) ((a^n −x^(2n) )/(a−x^2 ))−(x/a).((1−x^n )/(1−x))  S=(1/(a^(n−2) (a−x))).((a^n −x^(2n) )/(a−x^2 ))−(x/(a^(n−1) (a−x))).((1−x^n )/(1−x))
S=1+xa(1+x)+x2a2(1+x+x2)+.+xn1an1.1xn1xxaS=xax2a2(1+x)+.xn1an1.1xn11xxa.1xn1x(1xa)S=1+xax+x2a2x2+x3a3.x3+.xn1an1.xn1xa.1xn1x(1xa)S=1(x2a)n1x2axa.1xn1x(1xa)S=1an1anx2nax2xa.1xn1xS=1an2(ax).anx2nax2xan1(ax).1xn1x

Leave a Reply

Your email address will not be published. Required fields are marked *