Menu Close

Find-the-supremum-and-the-infimum-of-f-x-x-sin-x-x-0-pi-2-




Question Number 98450 by bemath last updated on 14/Jun/20
Find the supremum and the  infimum of f(x) = (x/(sin x)) ,x∈ (0,(π/2) ]
Findthesupremumandtheinfimumoff(x)=xsinx,x(0,π2]
Commented by bobhans last updated on 14/Jun/20
f ′(x)=((sin x−xcos x)/(sin^2 x))  ___(1)  take g(x) = sin x−xcos x ; x∈ [0,(π/2) ]   g ′(x)= xsin x > 0 on [0 ,(π/2) ] . hence g(x)  increasing in [ 0,(π/2) ]. g(0) < g(x)   ∴ g(x) =sin x−xcos x > 0   from (1) f′(x) > 0 for x∈(0,(π/2) ]   ∴ infimum = lim_(x→0)  f(x) = lim_(x→0)  (x/(sin x)) = 1  supremum = f((π/2)) = ((π/2)/(sin (π/2))) = (π/2) ■
f(x)=sinxxcosxsin2x___(1)takeg(x)=sinxxcosx;x[0,π2]g(x)=xsinx>0on[0,π2].henceg(x)increasingin[0,π2].g(0)<g(x)g(x)=sinxxcosx>0from(1)f(x)>0forx(0,π2]infimum=limx0f(x)=limx0xsinx=1supremum=f(π2)=π2sinπ2=π2◼

Leave a Reply

Your email address will not be published. Required fields are marked *