Menu Close

Find-the-supremum-and-the-infimum-of-x-sin-x-on-the-interval-0-pi-2-




Question Number 115516 by bobhans last updated on 26/Sep/20
Find the supremum and the infimum  of (x/(sin x)) on the interval (0, (π/2) ]
Findthesupremumandtheinfimumofxsinxontheinterval(0,π2]
Commented by john santu last updated on 26/Sep/20
infimum y = lim_(x→0)  (x/(sin x)) = 1  supremum f((π/2)) =(π/2)
infimumy=limx0xsinx=1supremumf(π2)=π2
Answered by TANMAY PANACEA last updated on 26/Sep/20
y=(x/(sinx))  (dy/dx)=((sinx−xcosx)/(sin^2 x))    for max\min  (dy/dx)=0   so x=tanx  (d^2 y/dx^2 )=((sin^2 x(cosx−cosx+xsinx)−(sinx−xcosx)(2sinxcosx))/(sin^4 x))  (d^2 y/dx^2 )=((xsin^3 x−2sin^2 xcosx+2xsinxcos^2 x)/(sin^4 x))  now putting x=tanx in (d^2 y/dx^2 )  ((d^2 y/dx^2 ))_(x=tanx)  =((((sin^4 x)/(cosx))−2sin^2 xcosx+2sin^2 xcosx)/(sin^4 x))  ((d^2 y/dx^2 ))_(x=tanx) =secx>0   when x∈(0,(π/2)]  wait...
y=xsinxdydx=sinxxcosxsin2xformaxmindydx=0sox=tanxd2ydx2=sin2x(cosxcosx+xsinx)(sinxxcosx)(2sinxcosx)sin4xd2ydx2=xsin3x2sin2xcosx+2xsinxcos2xsin4xnowputtingx=tanxind2ydx2(d2ydx2)x=tanx=sin4xcosx2sin2xcosx+2sin2xcosxsin4x(d2ydx2)x=tanx=secx>0whenx(0,π2]wait

Leave a Reply

Your email address will not be published. Required fields are marked *