Menu Close

Find-the-surface-area-of-a-solid-that-is-common-part-of-two-cylinders-x-2-y-2-a-2-y-2-z-2-a-2-Compute-the-volume-also-




Question Number 20471 by ajfour last updated on 27/Aug/17
Find the surface area of a solid  that is common part of two  cylinders x^2 +y^2 =a^2 , y^2 +z^2 =a^2 .  Compute the volume also.
Findthesurfaceareaofasolidthatiscommonpartoftwocylindersx2+y2=a2,y2+z2=a2.Computethevolumealso.
Commented by ajfour last updated on 27/Aug/17
Commented by ajfour last updated on 27/Aug/17
S=16∫_0 ^(  π/2) xadθ=16a^2 ∫_0 ^(  π/2) cos θdθ    =16a^2  .   (since x=z=acos θ).
S=160π/2xadθ=16a20π/2cosθdθ=16a2.(sincex=z=acosθ).
Answered by ajfour last updated on 28/Aug/17
V = 16∫_0 ^(  a) ∫_0 ^(  acos θ) (acos θ−x)dx]dy   =16∫_0 ^(  π/2) (axcos θ−(x^2 /2))∣_0 ^(acos θ) (acos θ)dθ  =16∫_0 ^(  π/2)  ((a^2 cos^2 θ)/2)(acos θ)dθ  =8a^3 ∫_0 ^(  π/2) (1−sin^2 θ)d(sin θ)  =8a^3 [sin θ−((sin^3 θ)/3)]∣_0 ^(π/2)                      V=((16a^3 )/3) .
V=160a0acosθ(acosθx)dx]dy=160π/2(axcosθx22)0acosθ(acosθ)dθ=160π/2a2cos2θ2(acosθ)dθ=8a30π/2(1sin2θ)d(sinθ)=8a3[sinθsin3θ3]0π/2V=16a33.

Leave a Reply

Your email address will not be published. Required fields are marked *