Menu Close

Find-the-Talor-series-of-ln-1-x-1-x-2-at-x-0-




Question Number 148720 by qaz last updated on 30/Jul/21
Find the Talor series of ((ln(1−x))/((1−x)^2 )) at x=0.
FindtheTalorseriesofln(1x)(1x)2atx=0.
Answered by mathmax by abdo last updated on 30/Jul/21
f(x)=((ln(1−x))/((1−x)^2 ))  we have Σ_(n=0) ^∞  x^n  =(1/(1−x))   if ∣x∣<1 ⇒  Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒(1/((1−x)^2 ))=Σ_(n=0) ^∞ (n+1)x^n   (d/dx)ln(1−x)=((−1)/(1−x))=−Σ_(n=0) ^∞  x^n  ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))+c(c=0)  =−Σ_(n=1) ^∞  (x^n /n)  ⇒f(x)=−(Σ_(n=0) ^∞  (n+1)x^n )(Σ_(n=1) ^∞  (1/n)x^n )  =−Σ_(n=1) ^∞  (x^n /n)−(Σ_(n=1) ^∞  (n+1)x^n )(Σ_(n=1) ^∞  (1/n)x^n )  =−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞  C_n x^n   C_n =Σ_(i+j=n) a_i b_j   =Σ_(i=1) ^(n−1)  (i+1)×(1/(n−i)) ⇒  f(x)=−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞ (Σ_(i=1) ^n  ((i+1)/(n−i)))x^n
f(x)=ln(1x)(1x)2wehaven=0xn=11xifx∣<1n=1nxn1=1(1x)21(1x)2=n=0(n+1)xnddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+c(c=0)=n=1xnnf(x)=(n=0(n+1)xn)(n=11nxn)=n=1xnn(n=1(n+1)xn)(n=11nxn)=n=1xnnn=1CnxnCn=i+j=naibj=i=1n1(i+1)×1nif(x)=n=1xnnn=1(i=1ni+1ni)xn
Commented by mathmax by abdo last updated on 30/Jul/21
f(x)=−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞ (Σ_(i=1) ^(n−1)  ((i+1)/(n−i)))x^n
f(x)=n=1xnnn=1(i=1n1i+1ni)xn
Answered by Kamel last updated on 30/Jul/21
Find the Talor series of ((ln(1−x))/((1−x)^2 )) at x=0.  f(x)=((Ln(1−x))/((1−x)^2 ))  (1/((1−ax)(1−bx)))=(1/(a−b))((a/(1−ax))−(b/(1−bx)))                                   =(1/(a−b))Σ_(n=0) ^(+∞) (a^(n+1) −b^(n+1) )x^n   ∴ f(x)=−Σ_(n=0) ^(+∞) ∫_0 ^1 (((n+1)(1−b)−1+b^(n+1) )/((1−b)^2 ))dbx^n         =−Σ_(n=0) ^(+∞) (−n+(n+1)∫_0 ^1 ((1−b^n )/(1−b)))x^n       ∴ ((Ln(1−x))/((1−x)^2 )) =Σ_(n=0) ^(+∞) (n−(n+1)H_n )x^n
FindtheTalorseriesofln(1x)(1x)2atx=0.f(x)=Ln(1x)(1x)21(1ax)(1bx)=1ab(a1axb1bx)=1ab+n=0(an+1bn+1)xnf(x)=+n=001(n+1)(1b)1+bn+1(1b)2dbxn=+n=0(n+(n+1)011bn1b)xnLn(1x)(1x)2=+n=0(n(n+1)Hn)xn
Answered by mathmax by abdo last updated on 30/Jul/21
another way  f(x)=((ln(1−x))/((1−x)^2 ))  f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n   =f(0) +Σ_(n=1) ^∞  ((f^((n)) (0))/(n!))x^n   =Σ_(n=1) ^∞  ((f^((n)) (0))/(n!))x^n         but f^((n)) (0)?  f^((n)) (x)=Σ_(k=0) ^n C_n ^k  (ln(1−x))^((k))  ×((1/((x−1)^2 )))^((n−k))   we have (ln(1−x))^((1))  =−(1/(1−x))=(1/(x−1)) ⇒  (ln(1−x))^((k))  =(((−1)^(k−1) (k−1)!)/((x−1)^k ))  also  ((1/((x−1)^2 )))^((n−k))  =(((−1)^(n−k) (n−k)!)/((x−1)^(n−k+1) )) ⇒  f^((n)) (x)=(((−1)^n n!)/((x−1)^(n+1) ))ln(1−x)+Σ_(k=1) ^n  C_n ^k  (((−1)^(k−1) (k−1)!)/((x−1)^k ))×(((−1)^(n−k) (n−k)!)/((x−1)^(n−k+1) ))  ⇒f^((n)) (0)=Σ_(k=1) ^n  (((−1)^(k−1) (k−1)!)/((−1)^k ))×(((−1)^(n−k) (n−k)!)/((−1)^(n−k+1) ))  =Σ_(k=1) ^n  (((k−1)!(n−k)!)/1) ⇒  f(x)=Σ_(n=1) ^∞ (Σ_(k=1) ^n  (((k−1)!(n−k)!)/(n!)))x^n
anotherwayf(x)=ln(1x)(1x)2f(x)=n=0f(n)(0)n!xn=f(0)+n=1f(n)(0)n!xn=n=1f(n)(0)n!xnbutf(n)(0)?f(n)(x)=k=0nCnk(ln(1x))(k)×(1(x1)2)(nk)wehave(ln(1x))(1)=11x=1x1(ln(1x))(k)=(1)k1(k1)!(x1)kalso(1(x1)2)(nk)=(1)nk(nk)!(x1)nk+1f(n)(x)=(1)nn!(x1)n+1ln(1x)+k=1nCnk(1)k1(k1)!(x1)k×(1)nk(nk)!(x1)nk+1f(n)(0)=k=1n(1)k1(k1)!(1)k×(1)nk(nk)!(1)nk+1=k=1n(k1)!(nk)!1f(x)=n=1(k=1n(k1)!(nk)!n!)xn
Answered by qaz last updated on 30/Jul/21
((ln(1−x))/((1−x)^2 ))  =−(Σ_(k=1) ^∞ (x^k /k))(Σ_(k=1) ^∞ x^(k−1) )(Σ_(k=1) ^∞ x^(k−1) )  =−(Σ_(k=1) ^∞ (x^k /k))(Σ_(n=1) ^∞ Σ_(k=1) ^n x^(k−1) ∙x^(n+1−k−1) )  =−(Σ_(k=1) ^∞ (x^k /k))(Σ_(n=1) ^∞ nx^(n−1) )  =−Σ_(n=1) ^∞ Σ_(k=1) ^n (x^k /k)∙(n+1−k)∙x^(n+1−k−1)   =−Σ_(n=1) ^∞ Σ_(k=1) ^n (((n+1)/k)−1)∙x^n   =Σ_(n=1) ^∞ [n−(n+1)H_n ]x^n
ln(1x)(1x)2=(k=1xkk)(k=1xk1)(k=1xk1)=(k=1xkk)(n=1nk=1xk1xn+1k1)=(k=1xkk)(n=1nxn1)=n=1nk=1xkk(n+1k)xn+1k1=n=1nk=1(n+1k1)xn=n=1[n(n+1)Hn]xn

Leave a Reply

Your email address will not be published. Required fields are marked *