Menu Close

find-the-taylor-series-f-z-cosz-z-pi-4-




Question Number 147635 by tabata last updated on 22/Jul/21
find the taylor series f(z)=cosz  ,z=(π/4)
$${find}\:{the}\:{taylor}\:{series}\:{f}\left({z}\right)={cosz}\:\:,{z}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 22/Jul/21
f(z)=Σ_(n=0) ^∞  (((−1)^n )/(2n!))(z−(π/4))^(2n)
$$\mathrm{f}\left(\mathrm{z}\right)=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}!}\left(\mathrm{z}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2n}} \\ $$
Commented by tabata last updated on 22/Jul/21
???????
$$??????? \\ $$
Commented by Sozan last updated on 22/Jul/21
thank you msr abdo
$${thank}\:{you}\:{msr}\:{abdo} \\ $$
Commented by Sozan last updated on 22/Jul/21
msr if the series is maclurien then    Σ_(n=0) ^∞ (((−1)^n )/(2n!))(z)^(2n)    its right or false ?
$${msr}\:{if}\:{the}\:{series}\:{is}\:{maclurien}\:{then} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}!}\left({z}\right)^{\mathrm{2}{n}} \:\:\:{its}\:{right}\:{or}\:{false}\:? \\ $$
Commented by mathmax by abdo last updated on 23/Jul/21
this is  maclaurin serie at z=0...
$$\mathrm{this}\:\mathrm{is}\:\:\mathrm{maclaurin}\:\mathrm{serie}\:\mathrm{at}\:\mathrm{z}=\mathrm{0}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *