Menu Close

find-the-taylor-series-of-f-z-sinz-z-pi-4-in-complex-number-




Question Number 147569 by Sozan last updated on 21/Jul/21
find the taylor series of f(z)=sinz ,z=(π/4) in complex number
findthetaylorseriesoff(z)=sinz,z=π4incomplexnumber
Answered by mathmax by abdo last updated on 22/Jul/21
f(z)=Σ_(n=0) ^∞  ((f^((n)) ((π/4)))/(n!))(z−(π/4))^n   we have f^((n)) (z)=sin(z+((nπ)/2)) ⇒  f^((n)) ((π/4))=sin((π/4)+((nπ)/2)) =sin((((2n+1)π)/4)) ⇒  sinz =Σ_(n=0) ^∞  (1/(n!))sin((((2n+1)π)/4))(z−(π/4))^n
f(z)=n=0f(n)(π4)n!(zπ4)nwehavef(n)(z)=sin(z+nπ2)f(n)(π4)=sin(π4+nπ2)=sin((2n+1)π4)sinz=n=01n!sin((2n+1)π4)(zπ4)n

Leave a Reply

Your email address will not be published. Required fields are marked *