Menu Close

Find-the-term-independent-of-x-in-the-expression-of-2x-1-2x-9-




Question Number 85532 by oustmuchiya@gmail.com last updated on 22/Mar/20
Find the term independent of x in the expression of (2x−(1/(2x)))^9
$${Find}\:{the}\:{term}\:{independent}\:{of}\:\boldsymbol{\mathrm{x}}\:{in}\:{the}\:{expression}\:{of}\:\left(\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}{x}}\right)^{\mathrm{9}} \\ $$
Answered by mind is power last updated on 22/Mar/20
(2a−(1/(2a)))^k   =Σ_(i=0) ^k C_k ^i (2a)^i .(−(1/(2a)))^(k−i)   =Σ_(i=0) ^k C_k ^i (−1)^(k−i) 2^(2i−k) .a^(2i−k)   inedependsnt a⇒k=2i  9 not possible
$$\left(\mathrm{2}{a}−\frac{\mathrm{1}}{\mathrm{2}{a}}\right)^{{k}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{{k}} {\sum}}{C}_{{k}} ^{{i}} \left(\mathrm{2}{a}\right)^{{i}} .\left(−\frac{\mathrm{1}}{\mathrm{2}{a}}\right)^{{k}−{i}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{{k}} {\sum}}{C}_{{k}} ^{{i}} \left(−\mathrm{1}\right)^{{k}−{i}} \mathrm{2}^{\mathrm{2}{i}−{k}} .{a}^{\mathrm{2}{i}−{k}} \\ $$$${inedependsnt}\:{a}\Rightarrow{k}=\mathrm{2}{i} \\ $$$$\mathrm{9}\:{not}\:{possible} \\ $$
Commented by jagoll last updated on 23/Mar/20
yes sir. i got same result.   nothing independent term of x
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{got}\:\mathrm{same}\:\mathrm{result}.\: \\ $$$$\mathrm{nothing}\:\mathrm{independent}\:\mathrm{term}\:\mathrm{of}\:\mathrm{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *