Menu Close

Find-the-three-last-digits-of-5-9999-




Question Number 86018 by Maclaurin Stickker last updated on 26/Mar/20
Find the three last digits of 5^(9999) .
Findthethreelastdigitsof59999.
Answered by MJS last updated on 26/Mar/20
5^1      005  5^2      025  5^3      125  5^4      625  5^5      125  5^6      625  ...  5^(2n+1)      125  5^(2n)           625  9999=2×4999+1 ⇒ answer is 125
51005520255312554625551255662552n+112552n6259999=2×4999+1answeris125
Answered by Serlea last updated on 26/Mar/20
5=5(mod1000)  5^2 =25(mod1000)  5^4 =625(mod1000)  5^6 =625(mod1000)  So for all even number ′′x′  5^x =625(mod1000) if x≥4  5^3 =125(mod1000)  5^5 =125(mod1000)  So for all odd number ′′Y′′  5^y =125(mld1000) if Y≥3  With that  5^(9999) =5^(9998+1) =(5^(9998) )(5^1 )  =625×5(mod1000)  =5^4 (mod1000)  =125
5=5(mod1000)52=25(mod1000)54=625(mod1000)56=625(mod1000)Soforallevennumberx5x=625(mod1000)ifx453=125(mod1000)55=125(mod1000)SoforalloddnumberY5y=125(mld1000)ifY3Withthat59999=59998+1=(59998)(51)=625×5(mod1000)=54(mod1000)=125

Leave a Reply

Your email address will not be published. Required fields are marked *