Menu Close

find-the-total-charge-enclosed-inside-a-volume-of-1-5-10-9-located-at-the-origin-if-D-e-x-sin-y-a-x-e-x-cos-y-a-y-2za-z-C-m-2-




Question Number 170297 by ali009 last updated on 19/May/22
 find the total charge enclosed inside a   volume of 1.5×10^(−9)  located at the origin  if D=e^(−x) sin(y)a_x ^� −(e^(−x) cos(y))a_y ^� +2za^� z C/m^2
$$\:{find}\:{the}\:{total}\:{charge}\:{enclosed}\:{inside}\:{a}\: \\ $$$${volume}\:{of}\:\mathrm{1}.\mathrm{5}×\mathrm{10}^{−\mathrm{9}} \:{located}\:{at}\:{the}\:{origin} \\ $$$${if}\:{D}={e}^{−{x}} {sin}\left({y}\right)\hat {{a}}_{{x}} −\left({e}^{−{x}} {cos}\left({y}\right)\right)\hat {{a}}_{{y}} +\mathrm{2}{z}\hat {{a}z}\:{C}/{m}^{\mathrm{2}} \\ $$
Answered by ali009 last updated on 20/May/22
pv=▽.D^→   pv=−e^(−x) sin(y)+e^(−x) sin(y)+2=2  Q_(enc) =∫_v pv . dv  Q_(enc) =pv∫dv  Q_(enc) =pv . v=1.5×10^(−9) ×2=3 nC
$${pv}=\bigtriangledown.\overset{\rightarrow} {{D}} \\ $$$${pv}=−{e}^{−{x}} {sin}\left({y}\right)+{e}^{−{x}} {sin}\left({y}\right)+\mathrm{2}=\mathrm{2} \\ $$$${Q}_{{enc}} =\int_{{v}} {pv}\:.\:{dv} \\ $$$${Q}_{{enc}} ={pv}\int{dv} \\ $$$${Q}_{{enc}} ={pv}\:.\:{v}=\mathrm{1}.\mathrm{5}×\mathrm{10}^{−\mathrm{9}} ×\mathrm{2}=\mathrm{3}\:{nC} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *