Menu Close

find-the-tylor-series-expantion-of-z-2-1-z-1-z-3-




Question Number 155542 by Engr_Jidda last updated on 02/Oct/21
find the tylor series expantion of ((z^2 −1)/((z+1)(z+3)))
findthetylorseriesexpantionofz21(z+1)(z+3)
Commented by aliyn last updated on 02/Oct/21
i think maclurin series but not tylor series ?
ithinkmaclurinseriesbutnottylorseries?
Commented by aliyn last updated on 02/Oct/21
Solution:    f(z) = ((z^2 −1)/((z+1)(z+3))) = (((z+3)−4)/((z+3))) = 1 − 4 (z+3)^(−1)     f(z) = 1 − 4(z+3)^(−1)    ⇒ f(0) = 1 − 4(3)^(−1)  = − (1/3)    f^′ (z)   = 4 (z+3)^(−2)           ⇒ f^′ (0) = 4 (3)^(−2)  = (4/9)    f^(′′) (z)   = −8 (z+3)^(−3)      ⇒ f^(′′) (0) = − (8/(27))    f^(′′′) (z)  = 24 (z+3)^(−4)        ⇒ f^(′′′) (0) = ((24)/(81))    f^((4)) (z) = − 96 (z+3)^(−5)  ⇒ f^((4)) (0) = − ((96)/(243))     :  :  : f^n (z)     ∴ f (z) = f (0) + f^′ (0) (z−a) + ((f^(′′) (z))/(2!))(z−a)^2  + ((f^(′′′) (z))/(3!))(z−a)^3  + ((f^( (4)) (z))/(4!))(z−a)^4  +......+ ((f^((n)) (z))/(n!))(z−a)^n     ∴ f (z) = − (1/3) + (4/9) z − (8/(27×2!)) z^2 + ((24)/(81×3!)) z^3  − ((96)/(243×4!)) z^4 +....(√)    ⟨ M . T  ⟩
Solution:f(z)=z21(z+1)(z+3)=(z+3)4(z+3)=14(z+3)1f(z)=14(z+3)1f(0)=14(3)1=13f(z)=4(z+3)2f(0)=4(3)2=49f(z)=8(z+3)3f(0)=827f(z)=24(z+3)4f(0)=2481f(4)(z)=96(z+3)5f(4)(0)=96243:::fn(z)f(z)=f(0)+f(0)(za)+f(z)2!(za)2+f(z)3!(za)3+f(4)(z)4!(za)4++f(n)(z)n!(za)nf(z)=13+49z827×2!z2+2481×3!z396243×4!z4+.M.T
Commented by Engr_Jidda last updated on 27/Oct/21
thanks
thanks
Commented by Engr_Jidda last updated on 27/Oct/21
yes sir
yessir
Answered by mr W last updated on 02/Oct/21
((z^2 −1)/((z+1)(z+3)))=((z−1)/(z+3))=1−(4/(3(1+(z/3))))  =1−(4/3)[1−((z/3))+((z/3))^2 −((z/3))^3 +...]  =−(1/3)+((4z)/3^2 )−((4z^2 )/3^3 )+((4z^3 )/3^4 )−((4z^4 )/3^5 )+...
z21(z+1)(z+3)=z1z+3=143(1+z3)=143[1(z3)+(z3)2(z3)3+]=13+4z324z233+4z3344z435+
Commented by Engr_Jidda last updated on 27/Oct/21
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *