Menu Close

Find-the-units-digit-of-2013-1-2013-2-2013-3-2013-2013-




Question Number 117369 by bemath last updated on 11/Oct/20
Find the units digit of 2013^1 +2013^2 +2013^3 +...+2013^(2013)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{units}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{2013}^{\mathrm{1}} +\mathrm{2013}^{\mathrm{2}} +\mathrm{2013}^{\mathrm{3}} +…+\mathrm{2013}^{\mathrm{2013}} \\ $$
Answered by JDamian last updated on 11/Oct/20
S=2013^1 +2013^2 + ∙∙∙ + 2013^(2013)   S mod 10 = (3^1 +3^2 +∙∙∙+3^(2013) )mod 10  The last digit of these powers are  3, 9, 7, 1, 3, 9, 7, 1, ∙∙∙  And the last digit of the sum  3, 2, 9, 0, 3, 2, 9, 0, ∙∙∙  As   2013 ≡ 1 mod 4    the answer is 3
$${S}=\mathrm{2013}^{\mathrm{1}} +\mathrm{2013}^{\mathrm{2}} +\:\centerdot\centerdot\centerdot\:+\:\mathrm{2013}^{\mathrm{2013}} \\ $$$${S}\:{mod}\:\mathrm{10}\:=\:\left(\mathrm{3}^{\mathrm{1}} +\mathrm{3}^{\mathrm{2}} +\centerdot\centerdot\centerdot+\mathrm{3}^{\mathrm{2013}} \right){mod}\:\mathrm{10} \\ $$$$\mathrm{The}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{these}\:\mathrm{powers}\:\mathrm{are} \\ $$$$\mathrm{3},\:\mathrm{9},\:\mathrm{7},\:\mathrm{1},\:\mathrm{3},\:\mathrm{9},\:\mathrm{7},\:\mathrm{1},\:\centerdot\centerdot\centerdot \\ $$$$\mathrm{And}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{3},\:\mathrm{2},\:\mathrm{9},\:\mathrm{0},\:\mathrm{3},\:\mathrm{2},\:\mathrm{9},\:\mathrm{0},\:\centerdot\centerdot\centerdot \\ $$$$\mathrm{As}\:\:\:\mathrm{2013}\:\equiv\:\mathrm{1}\:{mod}\:\mathrm{4}\:\:\:\:{the}\:{answer}\:{is}\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *