Menu Close

find-the-value-lim-n-1-1-1-2-1-3-1-4-1-n-n-2-n-




Question Number 144929 by gsk2684 last updated on 30/Jun/21
find the value   lim_(n→∞) (1+((1+(1/2)+(1/3)+(1/4)+...+(1/n))/n^2 ))^n
findthevaluelimn(1+1+12+13+14++1nn2)n
Answered by mathmax by abdo last updated on 30/Jun/21
A_n =(1+(H_n /n^2 ))^n  ⇒A_n =e^(nlog(1+(H_n /n^2 )))   H_n ∼logn +γ +o((1/n)) ⇒log(1+(H_n /n^2 ))∼log(1+((logn+γ+o((1/n)))/n^2 ))  ∼((log(n)+γ+o((1/n)))/n^2 ) ⇒nlog(1+(H_n /n^2 ))∼((logn +γ+o((1/n)))/n) →0 (n→+∞)  ⇒lim_(n→+∞)  A_n =1
An=(1+Hnn2)nAn=enlog(1+Hnn2)Hnlogn+γ+o(1n)log(1+Hnn2)log(1+logn+γ+o(1n)n2)log(n)+γ+o(1n)n2nlog(1+Hnn2)logn+γ+o(1n)n0(n+)limn+An=1
Commented by gsk2684 last updated on 30/Jun/21
thank you
thankyou
Commented by mathmax by abdo last updated on 30/Jun/21
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *