Menu Close

find-the-value-of-0-1-arctan-1-x-2-dx-




Question Number 32352 by abdo imad last updated on 23/Mar/18
find the value of  ∫_0 ^1  arctan((√(1−x^2 )))dx
findthevalueof01arctan(1x2)dx
Commented by abdo imad last updated on 26/Mar/18
ch.x=sint ⇒ I = ∫_0 ^(π/2)  arctan(cost) cost dt let integrate  by parts u=arctan(cost) and v^′  =cost  I = [sint arctan(cost)]_0 ^(π/2)   −∫_0 ^(π/2)     ((−sint)/(1+cos^2 t)) sint dt  = ∫_0 ^(π/2)   ((1−cos^2 t)/(1+cos^2 t)) dt  = ∫_0 ^(π/2)    ((1−((1+cos(2t))/2))/(1 +((1+cos(2t))/2))) dt  = ∫_0 ^(π/2)    ((1−cos(2t))/(3+cos(2t)))dt  =_(2t=u)  ∫_0 ^π    ((1−cosu)/(3 +cosu)) (du/2)  =(1/2) ∫_0 ^π    ((1−cosu)/(3 +cosu))du  ch.tan((u/2))=x give  I = (1/2) ∫_0 ^∞    ((1− ((1−x^2 )/(1+x^2 )))/(3 +((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 )) =∫_0 ^∞      ((1+x^2 −1+x^2 )/((3 +3x^2  +1−x^2 )(1+x^2 ))) dx  =∫_0 ^∞      ((2x^2 )/((4+2x^2 )(1+x^2 )))dx = ∫_0 ^∞    (x^2 /((x^2  +1)(x^2  +2)))dx  =(1/2) ∫_(−∞) ^(+∞)     (x^2 /((x^2 +1)(x^2  +2)))dx let consider  ϕ(z) =  (z^2 /((z^2  +1)(z^2  +2))) the poles of ϕ are  i ,−i, i(√(2 )) ,−i(√2)  and all are simples  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,i(√2)))    ϕ(z) =  (z^2 /((z−i)(z+i)(z−i(√2))(z +i(√2))))  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z)= ((−1)/((2i) (1))) =((−1)/(2i))  Res(ϕ,i(√2)) =lim_(z→i(√2)) (z−i(√2))ϕ(z) =  ((−2)/((−1)(2i(√2)))) =(1/(i(√2)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( ((−1)/(2i)) +(1/(i(√2)))) = −π   +((2π)/( (√2))) =−π +π(√2)  =((√2) −1)π .
ch.x=sintI=0π2arctan(cost)costdtletintegratebypartsu=arctan(cost)andv=costI=[sintarctan(cost)]0π20π2sint1+cos2tsintdt=0π21cos2t1+cos2tdt=0π211+cos(2t)21+1+cos(2t)2dt=0π21cos(2t)3+cos(2t)dt=2t=u0π1cosu3+cosudu2=120π1cosu3+cosuduch.tan(u2)=xgiveI=12011x21+x23+1x21+x22dx1+x2=01+x21+x2(3+3x2+1x2)(1+x2)dx=02x2(4+2x2)(1+x2)dx=0x2(x2+1)(x2+2)dx=12+x2(x2+1)(x2+2)dxletconsiderφ(z)=z2(z2+1)(z2+2)thepolesofφarei,i,i2,i2andallaresimples+φ(z)dz=2iπ(Res(φ,i)+Res(φ,i2))φ(z)=z2(zi)(z+i)(zi2)(z+i2)Res(φ,i)=limzi(zi)φ(z)=1(2i)(1)=12iRes(φ,i2)=limzi2(zi2)φ(z)=2(1)(2i2)=1i2+φ(z)dz=2iπ(12i+1i2)=π+2π2=π+π2=(21)π.
Commented by abdo imad last updated on 26/Mar/18
I = (1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz = (π/2)((√2)  −1) .
I=12+φ(z)dz=π2(21).
Answered by sma3l2996 last updated on 25/Mar/18
I=∫_0 ^1 arctan((√(1−x^2 )))dx  by parts  u=arctan((√(1−x^2 )))⇒u′=((−x)/((2−x^2 )(√(1−x^2 ))))  v′=1⇒v=x  I=[xarctan((√(1−x^2 )))]_0 ^1 +∫_0 ^1 (x^2 /((2−x^2 )(√(1−x^2 ))))dx  =−∫_0 ^1 ((2−x^2 −2)/((2−x^2 )(√(1−x^2 ))))dx=2∫_0 ^1 (dx/((2−x^2 )(√(1−x^2 ))))−∫_0 ^1 (dx/( (√(1−x^2 ))))  let  x=sint⇒dx=costdt  I=2∫_0 ^(π/2) (dt/(2−sin^2 t))−(π/2)  u=tant⇒dt=(du/(1+u^2 ))  2−sin^2 t=2−((tan^2 t)/(1+tan^2 t))=((2+tan^2 t)/(1+tan^2 t))=((2+u^2 )/(1+u^2 ))  I=2∫_0 ^∞ (du/(2+u^2 ))−(π/2)=∫_0 ^∞ (du/(1+((u/( (√2))))^2 ))−(π/2)=(√2)[arctan((u/( (√2))))]_0 ^∞ −(π/2)  I=((π(√2))/2)−(π/2)=(π/2)((√2)−1)
I=01arctan(1x2)dxbypartsu=arctan(1x2)u=x(2x2)1x2v=1v=xI=[xarctan(1x2)]01+01x2(2x2)1x2dx=012x22(2x2)1x2dx=201dx(2x2)1x201dx1x2letx=sintdx=costdtI=20π/2dt2sin2tπ2u=tantdt=du1+u22sin2t=2tan2t1+tan2t=2+tan2t1+tan2t=2+u21+u2I=20du2+u2π2=0du1+(u2)2π2=2[arctan(u2)]0π2I=π22π2=π2(21)

Leave a Reply

Your email address will not be published. Required fields are marked *