Menu Close

find-the-value-of-0-1-dx-x-2-2x-5-




Question Number 26396 by abdo imad last updated on 25/Dec/17
find the value of ∫_0 ^(1 )   (dx/(x^2 +2x +5)) .
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\:+\mathrm{5}}\:. \\ $$
Commented by abdo imad last updated on 26/Dec/17
let put I= ∫_0 ^1   (dx/(x^2 +2x+5))  due to  x^2 +2x+5=(x+1)^2 +4 we use   the changement x+1=2t  ⇒   I  = ∫_(1/2) ^1    ((2dt)/(4t^2 +4)) = (1/2) ∫_(1/2) ^1  (dt/(1+t^2 ))  I=(1/2) [arctant]_(1/2) ^1 = (1/2)(arctan(1)−arctan((1/2)))  ⇒   I=   (π/8)  −(1/2)arctan((1/2))
$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}\:\:{due}\:{to}\:\:{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}=\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\:{we}\:{use}\: \\ $$$${the}\:{changement}\:{x}+\mathrm{1}=\mathrm{2}{t}\:\:\Rightarrow\:\:\:{I}\:\:=\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{4}{t}^{\mathrm{2}} +\mathrm{4}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\:\left[{arctant}\right]_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}}\left({arctan}\left(\mathrm{1}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\Rightarrow\:\:\:{I}=\:\:\:\frac{\pi}{\mathrm{8}}\:\:−\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Answered by jota@ last updated on 25/Dec/17
∫_0 ^1 ((d(x+1))/((x+1)^2 +2^2 ))=(1/2)tan^(−1) (((x+1)/2))∣_0 ^1     =(1/2)[tan^(−1) 1−tan^(−1) (1/2)].
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{d}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{tan}^{−\mathrm{1}} \mathrm{1}−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}/\mathrm{2}\right)\right]. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *