Menu Close

find-the-value-of-0-1-dx-x-2-2x-5-




Question Number 26396 by abdo imad last updated on 25/Dec/17
find the value of ∫_0 ^(1 )   (dx/(x^2 +2x +5)) .
findthevalueof01dxx2+2x+5.
Commented by abdo imad last updated on 26/Dec/17
let put I= ∫_0 ^1   (dx/(x^2 +2x+5))  due to  x^2 +2x+5=(x+1)^2 +4 we use   the changement x+1=2t  ⇒   I  = ∫_(1/2) ^1    ((2dt)/(4t^2 +4)) = (1/2) ∫_(1/2) ^1  (dt/(1+t^2 ))  I=(1/2) [arctant]_(1/2) ^1 = (1/2)(arctan(1)−arctan((1/2)))  ⇒   I=   (π/8)  −(1/2)arctan((1/2))
letputI=01dxx2+2x+5duetox2+2x+5=(x+1)2+4weusethechangementx+1=2tI=1212dt4t2+4=12121dt1+t2I=12[arctant]121=12(arctan(1)arctan(12))I=π812arctan(12)
Answered by jota@ last updated on 25/Dec/17
∫_0 ^1 ((d(x+1))/((x+1)^2 +2^2 ))=(1/2)tan^(−1) (((x+1)/2))∣_0 ^1     =(1/2)[tan^(−1) 1−tan^(−1) (1/2)].
01d(x+1)(x+1)2+22=12tan1(x+12)01=12[tan11tan1(1/2)].

Leave a Reply

Your email address will not be published. Required fields are marked *