Menu Close

find-the-value-of-0-1-e-x-1-e-2x-dx-




Question Number 38202 by prof Abdo imad last updated on 22/Jun/18
find the value of  ∫_0 ^1  e^(−x) (√(1−e^(−2x) ))dx
findthevalueof01ex1e2xdx
Commented by math khazana by abdo last updated on 23/Jun/18
changement e^(−x) =t give x=−ln(t) and  I =− ∫_1 ^e^(−1)  t(√(1−t^2 )) (dt/t)  = ∫_(1/e) ^1 (√(1−t^2 ))dt  after we use the chang.t=sinθ  I = ∫_(arcsin(e^(−1) )) ^(π/2) cosθ.cossθ dθ  = ∫_(arcsin(e^(−1) )) ^(π/2)  ((1+cos(2θ))/2)dθ  =(1/2)( (π/2) −arcsin(e^(−1) )) +(1/4)[sin(2θ)]_(arcsin(e^(−1) )) ^(π/2)   =(π/4) −(1/2)arcsin(e^(−1) )−(1/4)sin(2arcsin(e^(−1) )).
changementex=tgivex=ln(t)andI=1e1t1t2dtt=1e11t2dtafterweusethechang.t=sinθI=arcsin(e1)π2cosθ.cossθdθ=arcsin(e1)π21+cos(2θ)2dθ=12(π2arcsin(e1))+14[sin(2θ)]arcsin(e1)π2=π412arcsin(e1)14sin(2arcsin(e1)).

Leave a Reply

Your email address will not be published. Required fields are marked *