find-the-value-of-0-1-e-x-1-e-2x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38202 by prof Abdo imad last updated on 22/Jun/18 findthevalueof∫01e−x1−e−2xdx Commented by math khazana by abdo last updated on 23/Jun/18 changemente−x=tgivex=−ln(t)andI=−∫1e−1t1−t2dtt=∫1e11−t2dtafterweusethechang.t=sinθI=∫arcsin(e−1)π2cosθ.cossθdθ=∫arcsin(e−1)π21+cos(2θ)2dθ=12(π2−arcsin(e−1))+14[sin(2θ)]arcsin(e−1)π2=π4−12arcsin(e−1)−14sin(2arcsin(e−1)). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-I-0-xe-x-2-1-e-2x-2-dx-Next Next post: Question-103739 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.