Question Number 38202 by prof Abdo imad last updated on 22/Jun/18
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} \sqrt{\mathrm{1}−{e}^{−\mathrm{2}{x}} }{dx} \\ $$
Commented by math khazana by abdo last updated on 23/Jun/18
$${changement}\:{e}^{−{x}} ={t}\:{give}\:{x}=−{ln}\left({t}\right)\:{and} \\ $$$${I}\:=−\:\int_{\mathrm{1}} ^{{e}^{−\mathrm{1}} } {t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\:\int_{\frac{\mathrm{1}}{{e}}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}\:\:{after}\:{we}\:{use}\:{the}\:{chang}.{t}={sin}\theta \\ $$$${I}\:=\:\int_{{arcsin}\left({e}^{−\mathrm{1}} \right)} ^{\frac{\pi}{\mathrm{2}}} {cos}\theta.{coss}\theta\:{d}\theta \\ $$$$=\:\int_{{arcsin}\left({e}^{−\mathrm{1}} \right)} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\:\frac{\pi}{\mathrm{2}}\:−{arcsin}\left({e}^{−\mathrm{1}} \right)\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left[{sin}\left(\mathrm{2}\theta\right)\right]_{{arcsin}\left({e}^{−\mathrm{1}} \right)} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left({e}^{−\mathrm{1}} \right)−\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{arcsin}\left({e}^{−\mathrm{1}} \right)\right). \\ $$