Menu Close

find-the-value-of-0-1-e-x-1-e-x-1-dx-




Question Number 40127 by maxmathsup by imad last updated on 16/Jul/18
find the value of ∫_0 ^1    ((e^x −1)/(e^x  +1))dx
findthevalueof01ex1ex+1dx
Commented by math khazana by abdo last updated on 18/Jul/18
let I = ∫_0 ^1   ((e^x −1)/(e^x  +1))dx  I = ∫_0 ^1   (e^x /(e^x  +1))dx −∫_0 ^1    (dx/(e^x  +1)) but  ∫_0 ^1   (e^x /(e^x  +1))dx =[ln(e^x  +1)]_0 ^1  =ln(1+e)−ln(2)  changement e^x =t give  ∫_0 ^1    (dx/(e^x  +1))dx = ∫_1 ^e      (1/(t+1)) (dt/t) =∫_1 ^e ((1/t) −(1/(t+1)))dt  =[ln∣ (t/(t+1))∣]_1 ^e = ln((e/(e+1))) +ln(2) ⇒  I =ln(1+e)−ln(2) −ln((e/(e+1)))−ln(2)  =2ln(e+1) −2ln(2) −1 .
letI=01ex1ex+1dxI=01exex+1dx01dxex+1but01exex+1dx=[ln(ex+1)]01=ln(1+e)ln(2)changementex=tgive01dxex+1dx=1e1t+1dtt=1e(1t1t+1)dt=[lntt+1]1e=ln(ee+1)+ln(2)I=ln(1+e)ln(2)ln(ee+1)ln(2)=2ln(e+1)2ln(2)1.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
∫_0 ^1 ((e^x −1)/(e^x +1))dx  t=e^x +1  dt=e^x dx  (dt/(t−1))=dx  ∫_2 ^(e+1)  ((t−2)/t).(dt/(t−1))  ∫_2 ^(e+1)   ((2(t−1)−t)/(t(t−1)))dt  ∫_2 ^(e+1)  ((2dt)/t)−∫_2 ^(e+1)  (dt/(t−1))    2lnt−ln(t−1)∣_2 ^(e+1)   =∣ln(t^2 /(t−1))∣_2 ^(e+1)   =ln(((e+1)^2 )/(e+1−1)) −ln(2^2 /(2−1))  =2ln(e+1)−lne−2ln2    =
01ex1ex+1dxt=ex+1dt=exdxdtt1=dx2e+1t2t.dtt12e+12(t1)tt(t1)dt2e+12dtt2e+1dtt12lntln(t1)2e+1=∣lnt2t12e+1=ln(e+1)2e+11ln2221=2ln(e+1)lne2ln2=

Leave a Reply

Your email address will not be published. Required fields are marked *