find-the-value-of-0-1-e-x-1-e-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40127 by maxmathsup by imad last updated on 16/Jul/18 findthevalueof∫01ex−1ex+1dx Commented by math khazana by abdo last updated on 18/Jul/18 letI=∫01ex−1ex+1dxI=∫01exex+1dx−∫01dxex+1but∫01exex+1dx=[ln(ex+1)]01=ln(1+e)−ln(2)changementex=tgive∫01dxex+1dx=∫1e1t+1dtt=∫1e(1t−1t+1)dt=[ln∣tt+1∣]1e=ln(ee+1)+ln(2)⇒I=ln(1+e)−ln(2)−ln(ee+1)−ln(2)=2ln(e+1)−2ln(2)−1. Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18 ∫01ex−1ex+1dxt=ex+1dt=exdxdtt−1=dx∫2e+1t−2t.dtt−1∫2e+12(t−1)−tt(t−1)dt∫2e+12dtt−∫2e+1dtt−12lnt−ln(t−1)∣2e+1=∣lnt2t−1∣2e+1=ln(e+1)2e+1−1−ln222−1=2ln(e+1)−lne−2ln2= Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-tdt-1-t-4-Next Next post: calculate-0-pi-4-cos-4-x-sin-2-xdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.